Detection of parking space availability based on video
but.event.date | 23.04.2024 | cs |
but.event.title | STUDENT EEICT 2024 | cs |
dc.contributor.author | Kužela, Miloslav | |
dc.contributor.author | Frýza, Tomáš | |
dc.date.accessioned | 2024-07-09T07:47:52Z | |
dc.date.available | 2024-07-09T07:47:52Z | |
dc.date.issued | 2024 | cs |
dc.description.abstract | This paper deals with the use of Machine vision and ML (Machine Learning) for a parking lot occupation detection. It presents and compares an already existing technology that solves such a problem with an AI (Artificial Intelligence) usecase. It introduces tools used to train and create such models and their subsequent results as well as a dataset that was used to verify the trained networks and discusses the future of how such a technology could be used to effectively and more affordably detect occupied parking spaces on parking lots. | en |
dc.format | text | cs |
dc.format.extent | 36-39 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings II of the 30st Conference STUDENT EEICT 2024: Selected papers. s. 36-39. ISBN 978-80-214-6230-4 | cs |
dc.identifier.doi | 10.13164/eeict.2024.36 | |
dc.identifier.isbn | 978-80-214-6230-4 | |
dc.identifier.issn | 2788-1334 | |
dc.identifier.uri | https://hdl.handle.net/11012/249326 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings II of the 30st Conference STUDENT EEICT 2024: Selected papers | en |
dc.relation.uri | https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Machine Vision | en |
dc.subject | Machine learning | en |
dc.subject | Parking occupancy | en |
dc.subject | Python | en |
dc.title | Detection of parking space availability based on video | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 36-eeict-2024-II.pdf
- Size:
- 2.63 MB
- Format:
- Adobe Portable Document Format
- Description: