Detection of parking space availability based on video

but.event.date23.04.2024cs
but.event.titleSTUDENT EEICT 2024cs
dc.contributor.authorKužela, Miloslav
dc.contributor.authorFrýza, Tomáš
dc.date.accessioned2024-07-09T07:47:52Z
dc.date.available2024-07-09T07:47:52Z
dc.date.issued2024cs
dc.description.abstractThis paper deals with the use of Machine vision and ML (Machine Learning) for a parking lot occupation detection. It presents and compares an already existing technology that solves such a problem with an AI (Artificial Intelligence) usecase. It introduces tools used to train and create such models and their subsequent results as well as a dataset that was used to verify the trained networks and discusses the future of how such a technology could be used to effectively and more affordably detect occupied parking spaces on parking lots.en
dc.formattextcs
dc.format.extent36-39cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 30st Conference STUDENT EEICT 2024: Selected papers. s. 36-39. ISBN 978-80-214-6230-4cs
dc.identifier.doi10.13164/eeict.2024.36
dc.identifier.isbn978-80-214-6230-4
dc.identifier.issn2788-1334
dc.identifier.urihttps://hdl.handle.net/11012/249326
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 30st Conference STUDENT EEICT 2024: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectMachine Visionen
dc.subjectMachine learningen
dc.subjectParking occupancyen
dc.subjectPythonen
dc.titleDetection of parking space availability based on videoen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
36-eeict-2024-II.pdf
Size:
2.63 MB
Format:
Adobe Portable Document Format
Description: