Klasifikace obrazů pomocí genetického programování
but.committee | prof. Ing. Lukáš Sekanina, Ph.D. (předseda) doc. Ing. František Zbořil, Ph.D. (místopředseda) Ing. Ivana Burgetová, Ph.D. (člen) doc. RNDr. Milan Češka, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) prof. Ing. Radomil Matoušek, Ph.D. (člen) | cs |
but.defence | Studentka nejprve prezentovala výsledky, kterých dosáhla v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Studentka následně odpověděla na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studentky na položené otázky rozhodla práci hodnotit stupněm " B ". Otázky u obhajoby: Můžete zdůvodnit, proč byl navržený přístup vyhodnocen na sadě obrazů o rozlišení 14x14 pixelů ale neuronová síť používala obrazy o rozlišení 28x28 pixelů? Jaké přesnosti by dosahovala neuronová síť při stejných vstupních podmínkách? | cs |
but.jazyk | čeština (Czech) | |
but.program | Informační technologie | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Sekanina, Lukáš | cs |
dc.contributor.author | Jašíčková, Karolína | cs |
dc.contributor.referee | Vašíček, Zdeněk | cs |
dc.date.created | 2018 | cs |
dc.description.abstract | Tato práce se zabývá klasifikací obrazu pomocí genetického programování a koevoluce. Algoritmy genetického programování umožňují generovat spustitelné struktury a navrhovat tak automatizovaně řešení ve formě programů. Použití koevoluce s predikcí fitness snižuje časovou náročnost výpočtu fitness a tím i dobu trvání celého algoritmu. Práce popisuje teoretický základ evolučních algoritmů a zejména kartézské genetické programování. Jsou také popsány vlastnosti koevolučních algoritmů a zejména navržená metoda pro návrh klasifikátoru obrazu s využitím koevoluce fitness prediktorů, jejímž cílem je nalézt kompromis mezi přesností klasifikace, dobou návrhu a složitostí klasifikátoru. Součástí práce je implementace navžené metody, provedení experimentů a srovnání získaných výsledků s ostatními metodami. | cs |
dc.description.abstract | This thesis deals with image classification based on genetic programming and coevolution. Genetic programming algorithms make generating executable structures possible, which allows us to design solutions in form of programs. Using coevolution with the fitness prediction lowers the amount of time consumed by fitness evaluation and, therefore, also the execution time. The thesis describes a theoretical background of evolutionary algorithms and, in particular, cartesian genetic programming. We also describe coevolutionary algorithms properties and especially the proposed method for the image classifier evolution using coevolution of fitness predictors, where the objective is to find a good compromise between the classification accuracy, design time and classifier complexity. A part of the thesis is implementation of the proposed method, conducting the experiments and comparison of obtained results with other methods. | en |
dc.description.mark | B | cs |
dc.identifier.citation | JAŠÍČKOVÁ, K. Klasifikace obrazů pomocí genetického programování [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2018. | cs |
dc.identifier.other | 114596 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/84963 | |
dc.language.iso | cs | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta informačních technologií | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | evoluční algoritmy | cs |
dc.subject | genetické programování | cs |
dc.subject | kartézské genetické programování | cs |
dc.subject | koevoluce | cs |
dc.subject | aproximace fitness | cs |
dc.subject | fitness prediktory | cs |
dc.subject | klasifikace obrazu | cs |
dc.subject | evolutionary algorithms | en |
dc.subject | genetic programming | en |
dc.subject | cartesian genetic programming | en |
dc.subject | coevolution | en |
dc.subject | fitness approximation | en |
dc.subject | fitness predictors | en |
dc.subject | image classification | en |
dc.title | Klasifikace obrazů pomocí genetického programování | cs |
dc.title.alternative | Image Classification Using Genetic Programming | en |
dc.type | Text | cs |
dc.type.driver | masterThesis | en |
dc.type.evskp | diplomová práce | cs |
dcterms.dateAccepted | 2018-06-19 | cs |
dcterms.modified | 2020-05-10-16:13:07 | cs |
eprints.affiliatedInstitution.faculty | Fakulta informačních technologií | cs |
sync.item.dbid | 114596 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.26 15:27:34 | en |
sync.item.modts | 2025.01.16 00:49:19 | en |
thesis.discipline | Bioinformatika a biocomputing | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta informačních technologií. Ústav počítačových systémů | cs |
thesis.level | Inženýrský | cs |
thesis.name | Ing. | cs |
Files
Original bundle
1 - 4 of 4
Loading...
- Name:
- final-thesis.pdf
- Size:
- 2.63 MB
- Format:
- Adobe Portable Document Format
- Description:
- final-thesis.pdf
Loading...
- Name:
- Posudek-Vedouci prace-20078_v.pdf
- Size:
- 85.9 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek-Vedouci prace-20078_v.pdf
Loading...
- Name:
- Posudek-Oponent prace-20078_o.pdf
- Size:
- 88.44 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek-Oponent prace-20078_o.pdf
Loading...
- Name:
- review_114596.html
- Size:
- 1.46 KB
- Format:
- Hypertext Markup Language
- Description:
- file review_114596.html