Phishing Detection Using Deep Learning Attention Techniques

Loading...
Thumbnail Image
Date
2021
Authors
Safonov, Yehor
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
In the modern world, electronic communication is defined as the most used technologyfor exchanging messages between users. The growing popularity of emails brings about considerablesecurity risks and transforms them into an universal tool for spreading phishing content. Even thoughtraditional techniques achieve high accuracy during spam filtering, they do not often catch up to therapid growth and evolution of spam techniques. These approaches are affected by overfitting issues,may converge into a poor local minimum, are inefficient in high-dimensional data processing andhave long-term maintainability problems. The main contribution of this paper is to develop and trainadvanced deep networks which use attention mechanisms for efficient phishing filtering and text understanding.Key aspects of the study lie in a detailed comparison of attention based machine learningmethods, their specifics and accuracy during the application to the phishing problem. From a practicalpoint of view, the paper is focused on email data corpus preprocessing. Deep learning attention basedmodels, for instance the BERT and the XLNet, have been successfully implemented and comparedusing statistical metrics. Obtained results show indisputable advantages of deep attention techniquescompared to the common approaches.
Description
Citation
Proceedings II of the 27st Conference STUDENT EEICT 2021: Selected Papers. s. 131-135. ISBN 978-80-214-5943-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Citace PRO