Modely a metody pro svozové problému v logistice

but.committeeprof. RNDr. Josef Šlapal, CSc. (předseda) prof. RNDr. Miloslav Druckmüller, CSc. (místopředseda) doc. Ing. Luděk Nechvátal, Ph.D. (člen) doc. RNDr. Jiří Tomáš, Dr. (člen) prof. Mgr. Pavel Řehák, Ph.D. (člen) Prof. Bruno Rubino (člen) Prof. Corrado Lattanzio (člen) Assoc. Prof. Massimiliano Giuli (člen)cs
but.defencePrezentace diplomové práce proběhla v souladu se stanovenými požadavky a komise v rámci její obhajoby neměla žádné dotazy. Prof. Šlapal vyjádřil uspokojení nad tím, že se studentovi ze zahraničí podařilo svědomitým přístupem vypracovat  kvalitní diplomovou práci, i když na ni měl oproti českým studentům méně času.cs
but.jazykangličtina (English)
but.programAplikované vědy v inženýrstvícs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorPopela, Pavelen
dc.contributor.authorMuna, Izza Hasanulen
dc.contributor.refereeRoupec, Janen
dc.date.created2019cs
dc.description.abstractThe thesis focuses on how to optimize vehicle routes for distributing logistics. This vehicle route optimization is known as a vehicle routing problem (VRP). The VRP has been extended in numerous directions for instance by some variations that can be combined. One of the extension forms of VRP is a capacitated VRP with stochastics demands (CVRPSD), where the vehicle capacity limit has a non-zero probability of being violated on any route. So, a failure to satisfy the amount of demand can appear. A strategy is required for updating the routes in case of such an event. This strategy is called as recourse action in the thesis. The main objective of the research is how to design the model of CVRPSD and find the optimal solution. The EEV (Expected Effective Value) and FCM (Fuzzy C-Means) – TSP (Travelling Salesman Problem) approaches are described and used to solve CVRPSD. Results have confirmed that the EEV approach has given a better performance than FCM-TSP for solving CVRPSD in small instances. But EEV has disadvantage, that the EEV is not capable to solve big instances in an acceptable running time because of complexity of the problem. In the real situation, the FCM –TSP approach is more suitable for implementations than the EEV because the FCM – TSP can find the solution in a shorter time. The disadvantage of this algorithm is that the computational time depends on the number of customers in a cluster.en
dc.description.abstractThe thesis focuses on how to optimize vehicle routes for distributing logistics. This vehicle route optimization is known as a vehicle routing problem (VRP). The VRP has been extended in numerous directions for instance by some variations that can be combined. One of the extension forms of VRP is a capacitated VRP with stochastics demands (CVRPSD), where the vehicle capacity limit has a non-zero probability of being violated on any route. So, a failure to satisfy the amount of demand can appear. A strategy is required for updating the routes in case of such an event. This strategy is called as recourse action in the thesis. The main objective of the research is how to design the model of CVRPSD and find the optimal solution. The EEV (Expected Effective Value) and FCM (Fuzzy C-Means) – TSP (Travelling Salesman Problem) approaches are described and used to solve CVRPSD. Results have confirmed that the EEV approach has given a better performance than FCM-TSP for solving CVRPSD in small instances. But EEV has disadvantage, that the EEV is not capable to solve big instances in an acceptable running time because of complexity of the problem. In the real situation, the FCM –TSP approach is more suitable for implementations than the EEV because the FCM – TSP can find the solution in a shorter time. The disadvantage of this algorithm is that the computational time depends on the number of customers in a cluster.cs
dc.description.markBcs
dc.identifier.citationMUNA, I. Modely a metody pro svozové problému v logistice [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2019.cs
dc.identifier.other117593cs
dc.identifier.urihttp://hdl.handle.net/11012/175526
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectlogisticsen
dc.subjectgraphsen
dc.subjectoptimizationen
dc.subjectrouting problemen
dc.subjectvehicle routing problem with uncertain demandsen
dc.subjectfuzzy c-means (FCM) – TSP.en
dc.subjectlogisticscs
dc.subjectgraphscs
dc.subjectoptimizationcs
dc.subjectrouting problemcs
dc.subjectvehicle routing problem with uncertain demandscs
dc.subjectfuzzy c-means (FCM) – TSP.cs
dc.titleModely a metody pro svozové problému v logisticeen
dc.title.alternativeModels and methods for routing problems in logisticscs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2019-06-11cs
dcterms.modified2019-06-12-08:48:59cs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
sync.item.dbid117593en
sync.item.dbtypeZPen
sync.item.insts2025.03.27 08:47:03en
sync.item.modts2025.01.15 16:12:59en
thesis.disciplineMatematické inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.levelInženýrskýcs
thesis.nameIng.cs
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format
Description:
final-thesis.pdf
Loading...
Thumbnail Image
Name:
appendix-1.rar
Size:
3.02 MB
Format:
Unknown data format
Description:
appendix-1.rar
Loading...
Thumbnail Image
Name:
review_117593.html
Size:
13.24 KB
Format:
Hypertext Markup Language
Description:
file review_117593.html
Collections