Modely a metody pro svozové problému v logistice
but.committee | prof. RNDr. Josef Šlapal, CSc. (předseda) prof. RNDr. Miloslav Druckmüller, CSc. (místopředseda) doc. Ing. Luděk Nechvátal, Ph.D. (člen) doc. RNDr. Jiří Tomáš, Dr. (člen) prof. Mgr. Pavel Řehák, Ph.D. (člen) Prof. Bruno Rubino (člen) Prof. Corrado Lattanzio (člen) Assoc. Prof. Massimiliano Giuli (člen) | cs |
but.defence | Prezentace diplomové práce proběhla v souladu se stanovenými požadavky a komise v rámci její obhajoby neměla žádné dotazy. Prof. Šlapal vyjádřil uspokojení nad tím, že se studentovi ze zahraničí podařilo svědomitým přístupem vypracovat kvalitní diplomovou práci, i když na ni měl oproti českým studentům méně času. | cs |
but.jazyk | angličtina (English) | |
but.program | Aplikované vědy v inženýrství | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Popela, Pavel | en |
dc.contributor.author | Muna, Izza Hasanul | en |
dc.contributor.referee | Roupec, Jan | en |
dc.date.created | 2019 | cs |
dc.description.abstract | The thesis focuses on how to optimize vehicle routes for distributing logistics. This vehicle route optimization is known as a vehicle routing problem (VRP). The VRP has been extended in numerous directions for instance by some variations that can be combined. One of the extension forms of VRP is a capacitated VRP with stochastics demands (CVRPSD), where the vehicle capacity limit has a non-zero probability of being violated on any route. So, a failure to satisfy the amount of demand can appear. A strategy is required for updating the routes in case of such an event. This strategy is called as recourse action in the thesis. The main objective of the research is how to design the model of CVRPSD and find the optimal solution. The EEV (Expected Effective Value) and FCM (Fuzzy C-Means) – TSP (Travelling Salesman Problem) approaches are described and used to solve CVRPSD. Results have confirmed that the EEV approach has given a better performance than FCM-TSP for solving CVRPSD in small instances. But EEV has disadvantage, that the EEV is not capable to solve big instances in an acceptable running time because of complexity of the problem. In the real situation, the FCM –TSP approach is more suitable for implementations than the EEV because the FCM – TSP can find the solution in a shorter time. The disadvantage of this algorithm is that the computational time depends on the number of customers in a cluster. | en |
dc.description.abstract | The thesis focuses on how to optimize vehicle routes for distributing logistics. This vehicle route optimization is known as a vehicle routing problem (VRP). The VRP has been extended in numerous directions for instance by some variations that can be combined. One of the extension forms of VRP is a capacitated VRP with stochastics demands (CVRPSD), where the vehicle capacity limit has a non-zero probability of being violated on any route. So, a failure to satisfy the amount of demand can appear. A strategy is required for updating the routes in case of such an event. This strategy is called as recourse action in the thesis. The main objective of the research is how to design the model of CVRPSD and find the optimal solution. The EEV (Expected Effective Value) and FCM (Fuzzy C-Means) – TSP (Travelling Salesman Problem) approaches are described and used to solve CVRPSD. Results have confirmed that the EEV approach has given a better performance than FCM-TSP for solving CVRPSD in small instances. But EEV has disadvantage, that the EEV is not capable to solve big instances in an acceptable running time because of complexity of the problem. In the real situation, the FCM –TSP approach is more suitable for implementations than the EEV because the FCM – TSP can find the solution in a shorter time. The disadvantage of this algorithm is that the computational time depends on the number of customers in a cluster. | cs |
dc.description.mark | B | cs |
dc.identifier.citation | MUNA, I. Modely a metody pro svozové problému v logistice [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2019. | cs |
dc.identifier.other | 117593 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/175526 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | logistics | en |
dc.subject | graphs | en |
dc.subject | optimization | en |
dc.subject | routing problem | en |
dc.subject | vehicle routing problem with uncertain demands | en |
dc.subject | fuzzy c-means (FCM) – TSP. | en |
dc.subject | logistics | cs |
dc.subject | graphs | cs |
dc.subject | optimization | cs |
dc.subject | routing problem | cs |
dc.subject | vehicle routing problem with uncertain demands | cs |
dc.subject | fuzzy c-means (FCM) – TSP. | cs |
dc.title | Modely a metody pro svozové problému v logistice | en |
dc.title.alternative | Models and methods for routing problems in logistics | cs |
dc.type | Text | cs |
dc.type.driver | masterThesis | en |
dc.type.evskp | diplomová práce | cs |
dcterms.dateAccepted | 2019-06-11 | cs |
dcterms.modified | 2019-06-12-08:48:59 | cs |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |
sync.item.dbid | 117593 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.27 08:47:03 | en |
sync.item.modts | 2025.01.15 16:12:59 | en |
thesis.discipline | Matematické inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematiky | cs |
thesis.level | Inženýrský | cs |
thesis.name | Ing. | cs |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- final-thesis.pdf
- Size:
- 1.91 MB
- Format:
- Adobe Portable Document Format
- Description:
- final-thesis.pdf
Loading...
- Name:
- appendix-1.rar
- Size:
- 3.02 MB
- Format:
- Unknown data format
- Description:
- appendix-1.rar
Loading...
- Name:
- review_117593.html
- Size:
- 13.24 KB
- Format:
- Hypertext Markup Language
- Description:
- file review_117593.html