CO-Induced Dimer Decay Responsible for Gem-Dicarbonyl Formation on a Model Single-Atom Catalyst

dc.contributor.authorWang, Chunleics
dc.contributor.authorSombut, Panukorncs
dc.contributor.authorPuntscher, Lenacs
dc.contributor.authorJakub, Zdeněkcs
dc.contributor.authorMeier, Matthiascs
dc.contributor.authorPavelec, Jiřícs
dc.contributor.authorBliem, Rolandcs
dc.contributor.authorSchmid, Michaelcs
dc.contributor.authorDiebold, Ulrikecs
dc.contributor.authorFranchini, Cesarecs
dc.contributor.authorParkinson, Gareth S.cs
dc.coverage.issue16cs
dc.coverage.volume63cs
dc.date.accessioned2025-06-17T07:58:32Z
dc.date.available2025-06-17T07:58:32Z
dc.date.issued2024-04-15cs
dc.description.abstractThe ability to coordinate multiple reactants at the same active site is important for the wide-spread applicability of single-atom catalysis. Model catalysts are ideal to investigate the link between active site geometry and reactant binding, because the structure of single-crystal surfaces can be precisely determined, the adsorbates imaged by scanning tunneling microscopy (STM), and direct comparisons made to density functional theory. In this study, we follow the evolution of Rh1 adatoms and minority Rh2 dimers on Fe3O4(001) during exposure to CO using time-lapse STM at room temperature. CO adsorption at Rh1 sites results exclusively in stable Rh1CO monocarbonyls, because the Rh atom adapts its coordination to create a stable pseudo-square planar environment. Rh1(CO)2 gem-dicarbonyl species are also observed, but these form exclusively through the breakup of Rh2 dimers via an unstable Rh2(CO)3 intermediate. Overall, our results illustrate how minority species invisible to area-averaging spectra can play an important role in catalytic systems, and show that the decomposition of dimers or small clusters can be an avenue to produce reactive, metastable configurations in single-atom catalysis. Time-lapse scanning tunneling microscopy movies are combined with theoretical computations to study CO adsorption on a model Rh1/Fe3O4(001) catalyst under ultrahigh vacuum conditions. Direct CO adsorption at Rh1 sites results in monocarbonyl species. Rh1-(CO)2 gem dicarbonyl species are observed, but from only via the CO-induced break-up of Rh2 dimer species.+ imageen
dc.formattextcs
dc.format.extent8cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2024, vol. 63, issue 16, 8 p.en
dc.identifier.doi10.1002/anie.202317347cs
dc.identifier.issn1521-3773cs
dc.identifier.orcid0000-0001-9538-9087cs
dc.identifier.other188827cs
dc.identifier.researcheridAAW-8780-2020cs
dc.identifier.urihttps://hdl.handle.net/11012/252862
dc.language.isoencs
dc.publisherWILEY-V C H VERLAG GMBHcs
dc.relation.ispartofANGEWANDTE CHEMIE-INTERNATIONAL EDITIONcs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/anie.202317347cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1521-3773/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectScanning tunneling microscopyen
dc.subjectsingle-atom catalysisen
dc.subjectdensity functional theoryen
dc.subjectmetal-oxide surfacesen
dc.titleCO-Induced Dimer Decay Responsible for Gem-Dicarbonyl Formation on a Model Single-Atom Catalysten
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-188827en
sync.item.dbtypeVAVen
sync.item.insts2025.06.17 09:58:32en
sync.item.modts2025.06.17 09:33:25en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Molekulární nanostruktury na površíchcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AngewChemIntEd2024Wang.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
Description:
file AngewChemIntEd2024Wang.pdf