Optimizing of pre-processing analysis for Illumina RNA-Seq data in Arabidopsis thaliana

Loading...
Thumbnail Image
Date
2024
Authors
Schwarzerová, Jana
Janigová, Patrícia
Dvořáčková, Martina
Weckwerth, Wolfram
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
Gene expression analysis through RNA sequencing (RNA-Seq) has revolutionized molecular biology, providing profound insights into the intricate transcriptional landscapes of organisms. Arabidopsis thaliana, a widely studied model plant, serves as a cornerstone for investigating fundamental biological and ecology processes. However, accurate interpretation of RNASeq data hinges on meticulous pre-processing methods to ensure data integrity and trustworthiness, especially in the context of Illumina sequencing. In this research, we present a comprehensive framework for optimizing pre-processing analysis tailored specifically for Arabidopsis thaliana RNA-Seq datasets generated through Illumina sequencing. Our approach encompasses rigorous quality control, precise read alignment, transcript quantification, and normalization procedures crucial for subsequent differential expression analysis. Additionally, we address unique considerations and challenges inherent to Arabidopsis thaliana datasets, providing valuable insights for researchers in the field.
Description
Citation
Proceedings II of the 30st Conference STUDENT EEICT 2024: Selected papers. s. 142-145. ISBN 978-80-214-6230-4
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Citace PRO