Shear Deformation of Non-modulated Ni2MnGa Martensite: An Ab Initio Study

Loading...
Thumbnail Image

Authors

Heczko, Martin
Šesták, Petr
Seiner, Hanuš
Zelený, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

SPRINGER INT PUBL AG
Altmetrics

Abstract

The impact of shear deformation in (101)[101] system of non-modulated (NM) martensite in Ni2MnGa ferromagnetic shape memory alloy is investigated by means of ab initio atomistic simulations. The shear system is associated with twinning of NM lattice and intermatensitic transformation to modulated structures. The stability of the NM lattice increases with increasing content of Mn. The most realistic shear mechanism for twin reorientation can be approximated by the simple shear mechanism, although the lowest barriers were calculated for pure shear mechanism. The energy barrier between twin variants further reduces due to spontaneous appearance of lattice modulation or, in other words, the nanotwins with thickness of two atomic planes. Such nanotwins appear also on the generalized planar fault energy (GPFE) curve calculated using a newly developed advanced procedure and exhibits even lower energy than the defect free NM structure. These nanotwin doublelayers are also basic building blocks of modulated structures and play an important role in intermartensitic transformation.
The impact of shear deformation in (101)[101] system of non-modulated (NM) martensite in Ni2MnGa ferromagnetic shape memory alloy is investigated by means of ab initio atomistic simulations. The shear system is associated with twinning of NM lattice and intermatensitic transformation to modulated structures. The stability of the NM lattice increases with increasing content of Mn. The most realistic shear mechanism for twin reorientation can be approximated by the simple shear mechanism, although the lowest barriers were calculated for pure shear mechanism. The energy barrier between twin variants further reduces due to spontaneous appearance of lattice modulation or, in other words, the nanotwins with thickness of two atomic planes. Such nanotwins appear also on the generalized planar fault energy (GPFE) curve calculated using a newly developed advanced procedure and exhibits even lower energy than the defect free NM structure. These nanotwin doublelayers are also basic building blocks of modulated structures and play an important role in intermartensitic transformation.

Description

Citation

Shape Memory and Superelasticity. 2024, vol. 10, issue 4, p. 474-486.
https://link.springer.com/article/10.1007/s40830-024-00510-z

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO