Can Neural Networks spot the Sponge?

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorGradoš, Matej
dc.date.accessioned2025-07-30T10:00:55Z
dc.date.available2025-07-30T10:00:55Z
dc.date.issued2025cs
dc.description.abstractCryptographic hash functions ensure data integrity and security in modern cryptographic systems. They are a core mechanism for digital signatures, authentication protocols, and blockchain technology, designed to make their output impossible to predict. Inspired by machine learning’s ability to approximate complex functions, we trained models of varying complexity to assess whether they can learn and replicate the behavior of cryptographic hash functions. Our study evaluates the extent to which these models are able to approximate the underlying mathematical operations, shedding light on potential vulnerabilities and theoretical limits of machine learning in cryptographic contexts.en
dc.formattextcs
dc.format.extent153-156cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 153-156. ISBN 978-80-214-6321-9cs
dc.identifier.isbn978-80-214-6321-9
dc.identifier.urihttps://hdl.handle.net/11012/255267
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 31st Conference STUDENT EEICT 2025: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectHash functionsen
dc.subjectneural networksen
dc.subjectmachine learningen
dc.subjectcryptanalysisen
dc.titleCan Neural Networks spot the Sponge?en
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
153-Grados.pdf
Size:
716.64 KB
Format:
Adobe Portable Document Format