Rock Joint Asperities and Mechanical Strength of Concrete

Loading...
Thumbnail Image

Authors

Ficker, Tomáš
Komárková, Tereza

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

Mechanical interactions between concrete foundations of large civil engineering structures (tunnels, bridges or dams) and the asperity surfaces of rock masses represent a useful topic for investigation. It is obvious that such large objects exert huge pressures on bedrocks and this might result in surprising variations of mechanical properties of the materials used in foundations. The present contribution evaluates possible changes of the compressive strength of concrete caused by the invasive acting of asperity-like needles penetrating into the volume of this material. The experimental arrangement simulates mechanical interactions between sharp asperities of bedrocks and the cement-based materials placed in the foundations of large civil engineering structures.
Mechanical interactions between concrete foundations of large civil engineering structures (tunnels, bridges or dams) and the asperity surfaces of rock masses represent a useful topic for investigation. It is obvious that such large objects exert huge pressures on bedrocks and this might result in surprising variations of mechanical properties of the materials used in foundations. The present contribution evaluates possible changes of the compressive strength of concrete caused by the invasive acting of asperity-like needles penetrating into the volume of this material. The experimental arrangement simulates mechanical interactions between sharp asperities of bedrocks and the cement-based materials placed in the foundations of large civil engineering structures.

Description

Citation

IOP Conference Series: Materials Science and Engineering. 2017, vol. 245, issue 3, p. 1-8.
http://iopscience.iop.org/article/10.1088/1757-899X/245/3/032011

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO