Universal Procedure for Correction of Plasticity Effect in HoleDrilling Uniform Residual Stress Measurement

Loading...
Thumbnail Image

Authors

Halabuk, Dávid
Návrat, Tomáš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Altmetrics

Abstract

Background The hole-drilling method is a well-known and widely used technique for the determination of residual stresses, but is limited to materials with linear elastic behaviour. This can be a problem when high residual stresses are measured, since a local yielding can occur due to stress concentration around the drilled hole. Objective If the residual stress exceeds about 80% of the material yield stress, the error caused by the plasticity effect becomes significant. In order to correctly evaluate high uniform residual stresses, a universal procedure for a correction of the plasticity effect is introduced. Methods The procedure uses a neural network and is capable of correcting any combination of uniform residual stresses with magnitudes up to the material yield stress. It also covers a wide range of material parameters, hole diameters, and strain gauge rosettes and it is independent of the orientation of the strain gauge rosette. Results The correction procedure was tested by more than a million randomly generated stress states that covered the entire range of input parameters and performs remarkably well, since the error of the corrected residual stresses is negligible even for the states with residual stress magnitudes equal to the material yield stress. Conclusions The proposed correction extends the application range of the hole-drilling method to high uniform residual stresses and therefore can be very useful for practical measurements.
Background The hole-drilling method is a well-known and widely used technique for the determination of residual stresses, but is limited to materials with linear elastic behaviour. This can be a problem when high residual stresses are measured, since a local yielding can occur due to stress concentration around the drilled hole. Objective If the residual stress exceeds about 80% of the material yield stress, the error caused by the plasticity effect becomes significant. In order to correctly evaluate high uniform residual stresses, a universal procedure for a correction of the plasticity effect is introduced. Methods The procedure uses a neural network and is capable of correcting any combination of uniform residual stresses with magnitudes up to the material yield stress. It also covers a wide range of material parameters, hole diameters, and strain gauge rosettes and it is independent of the orientation of the strain gauge rosette. Results The correction procedure was tested by more than a million randomly generated stress states that covered the entire range of input parameters and performs remarkably well, since the error of the corrected residual stresses is negligible even for the states with residual stress magnitudes equal to the material yield stress. Conclusions The proposed correction extends the application range of the hole-drilling method to high uniform residual stresses and therefore can be very useful for practical measurements.

Description

Citation

EXPERIMENTAL MECHANICS. 2022, vol. 62, issue 8, p. 1267-1287.
https://link.springer.com/article/10.1007/s11340-022-00869-z

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO