New Chemically Resistant Coating Systems with Progressive Incorporation of Hazardous Waste in Polyurethane and Epoxy Matrices

Loading...
Thumbnail Image

Authors

Hodul, Jakub
Mészárosová, Lenka
Drochytka, Rostislav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

New types of highly chemically resistant coating systems, primarily intended for concrete and metal substrates, were designed and experimentally verified in the paper. Secondary raw materials in optimal amounts, including solidified hazardous waste (e.g., end product and cement bypass dust), were used as microfillers. The polymer coating systems, containing pre-treated hazardous waste (HW), showed high abrasion resistance and excellent adhesion to metal and concrete surfaces. Based on polyurethane and epoxy resins, the coatings can be used in environments where aggressive chemical media act, such as sewers and the chemical industry. The developed polymeric coating systems showed even better properties than the compared reference coating systems. The chemical resistance of the three-layer coating systems was evaluated both visually and based on changes in mechanical properties, such as hardness and adhesion. The microstructure of the coating systems was also monitored using a digital optical microscope and a scanning electron microscope with energy dispersive X-ray analysis (SEM-EDX) after chemical stress. It was observed that the particles of HW were fully incorporated into the polymer matrix of the coating systems.
New types of highly chemically resistant coating systems, primarily intended for concrete and metal substrates, were designed and experimentally verified in the paper. Secondary raw materials in optimal amounts, including solidified hazardous waste (e.g., end product and cement bypass dust), were used as microfillers. The polymer coating systems, containing pre-treated hazardous waste (HW), showed high abrasion resistance and excellent adhesion to metal and concrete surfaces. Based on polyurethane and epoxy resins, the coatings can be used in environments where aggressive chemical media act, such as sewers and the chemical industry. The developed polymeric coating systems showed even better properties than the compared reference coating systems. The chemical resistance of the three-layer coating systems was evaluated both visually and based on changes in mechanical properties, such as hardness and adhesion. The microstructure of the coating systems was also monitored using a digital optical microscope and a scanning electron microscope with energy dispersive X-ray analysis (SEM-EDX) after chemical stress. It was observed that the particles of HW were fully incorporated into the polymer matrix of the coating systems.

Description

Citation

Materials. 2022, vol. 15, issue 9, p. 1-26.
https://www.mdpi.com/1996-1944/15/9/3235

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO