Organoselenium Precursors for Atomic Layer Deposition

Loading...
Thumbnail Image

Authors

Charvot, Jaroslav
Zazpe Mendioroz, Raúl
Macák, Jan
Bureš, Filip

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society
Altmetrics

Abstract

Organoselenium compounds with perspective application as Se precursors for atomic layer deposition have been reviewed. The originally limited portfolio of available Se precursors such as H2Se and diethyl(di)selenide has recently been extended by bis trialkylsilyl)selenides, bis(trialkylstannyl)selenides, cyclic selenides, and tetrakis(N,N-dimethyldithiocarbamate)-selenium. Their structural aspects, property tuning, fundamental properties, and preparations are discussed. It turned out that symmetric four- and six-membered cyclic silyl selenides possess well-balanced reactivity/stability, facile and cost-effective synthesis starting from inexpensive and readily available chlorosilanes, improved resistance toward air and moisture, easy handling, sufficient volatility, thermal resistance, and complete gas-to-solid phase exchange reaction with MoCl5, affording MoSe2 nanostructures. These properties make them the most promising Se precursor developed for atomic layer deposition so far.
Organoselenium compounds with perspective application as Se precursors for atomic layer deposition have been reviewed. The originally limited portfolio of available Se precursors such as H2Se and diethyl(di)selenide has recently been extended by bis trialkylsilyl)selenides, bis(trialkylstannyl)selenides, cyclic selenides, and tetrakis(N,N-dimethyldithiocarbamate)-selenium. Their structural aspects, property tuning, fundamental properties, and preparations are discussed. It turned out that symmetric four- and six-membered cyclic silyl selenides possess well-balanced reactivity/stability, facile and cost-effective synthesis starting from inexpensive and readily available chlorosilanes, improved resistance toward air and moisture, easy handling, sufficient volatility, thermal resistance, and complete gas-to-solid phase exchange reaction with MoCl5, affording MoSe2 nanostructures. These properties make them the most promising Se precursor developed for atomic layer deposition so far.

Description

Citation

ACS Omega. 2021, vol. 6, issue 10, p. 6554-6558.
https://pubs.acs.org/doi/10.1021/acsomega.1c00223

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO