Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling

Loading...
Thumbnail Image

Authors

Křápek, Vlastimil
Konečná, Andrea
Horák, Michal
Ligmajer, Filip
Stöger-Pollach, Michael
Hrtoň, Martin
Babocký, Jiří
Šikola, Tomáš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

WALTER DE GRUYTER GMBH
Altmetrics

Abstract

We revisit plasmon modes in nanoparticle dimers with conductive or insulating junction resulting in conductive or capacitive coupling. In our study, which combines electron energy loss spectroscopy, optical spectroscopy, and numerical simulations, we show the coexistence of strongly and weakly hybridised modes. While the properties of the former ones strongly depend on the nature of the junction, the properties of the latter ones are nearly unaffected. This opens up a prospect for independent engineering of individual plasmon modes in a single plasmonic antenna. In addition, we show that Babinet's principle allows to engineer the near field of plasmon modes independent of their energy. Finally, we demonstrate that combined electron energy loss imaging of a plasmonic antenna and its Babinet-complementary counterpart allows to reconstruct the distribution of both electric and magnetic near fields of localised plasmon resonances supported by the antenna, as well as charge and current antinodes of related charge oscillations.
We revisit plasmon modes in nanoparticle dimers with conductive or insulating junction resulting in conductive or capacitive coupling. In our study, which combines electron energy loss spectroscopy, optical spectroscopy, and numerical simulations, we show the coexistence of strongly and weakly hybridised modes. While the properties of the former ones strongly depend on the nature of the junction, the properties of the latter ones are nearly unaffected. This opens up a prospect for independent engineering of individual plasmon modes in a single plasmonic antenna. In addition, we show that Babinet's principle allows to engineer the near field of plasmon modes independent of their energy. Finally, we demonstrate that combined electron energy loss imaging of a plasmonic antenna and its Babinet-complementary counterpart allows to reconstruct the distribution of both electric and magnetic near fields of localised plasmon resonances supported by the antenna, as well as charge and current antinodes of related charge oscillations.

Description

Citation

Nanophotonics. 2020, vol. 9, issue 3, p. 623-632.
https://www.degruyter.com/view/journals/nanoph/9/3/article-p623.xml

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO