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Abstract: This paper is focused on the parameter identification of the Two-Mass mechanical flexible
system for motor drive applications. The whole methodology is based on the amplitude frequency
characteristic given by the Welch spectrum analysis method. Then, an initial estimate of the plant
parameters is extracted from the amplitude frequency characteristic and it is used as the starting point
for the Levenberg-Marquardt algorithm to enhance the parameter estimation.
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INTRODUCTION

Plenty of mechanical rotary systems with any flexible coupling can be modeled as the two-mass
system. As the examples; the toothed belt, axial rotary flexible connection, and long torque shaft con-
nection can be given. Work [1] can be used as a good knowledge background for the physical based
modeling of the multi-mass systems. These types of systems (plants) show resonant behavior on cer-
tain frequencies. This means that there are (anti)resonant peaks on the plant frequency response. Such
a behavior causes many problems in closed-loop system design and hence, it is necessary to identify
this behavior as best as possible. For the satisfying parameter estimate, an appropriate identification
method has to be chosen. Right beside this, an appropriate input signal has to be chosen as well. This
means that the signal must be rich enough to ensure sufficient plant excitation. Widely used methods
for identification of the electric drive systems are methods based on the frequency analysis or the
spectral analysis. The method used in this paper is based on the spectral analysis using power spectral
densities (periodograms) estimates according to:[2]. The main goal of the identification experiment
presented in this paper is to obtain the plant parameters estimate, which allows successful recon-
struction of the resonant and anti-resonant peaks values and their positions on the plant frequency
response.

TWO-MASS SYSTEM MODELLING

The Two-Mass mechanical flexible system can be understood as the system with the single input and
with two outputs and can be described by the following set of the differential equations.
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WhereJ,, and J, arethe inertias of the shaft and load, respectively. Param®isrthe dumping
coefficient and the parametkiis the flexible coefficient. Variablesy, andwy, standfor the motor
shaft and the load angular velocities, respectively. The varidlhlesnd6, areshaft and load angular
positions. Finally, theT; variable stands for the input torque generated by the electric part of the
machine. The typical frequency response of the plant Withsthe input andwy, asthe output is
shown in Figure 1.
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Figure 1: Flexible system frequency response (example)

The blue line represents the magnitude of the mechanical part of the drive systems with a flexible
mechanical part. Red and green lines represent resonance and anti-resonance overshoots, respectively.
Red and green crosses then represent their positions in the frequency. The mentioned transfer function
of the examined plant is as follows:
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where thes stands for Laplace operator. The bi-quadratic member creates the flexible element of
the system. The main goal of this paper is to show the procedure df.thlg, k, andb parameters
estimation. The resonant angular frequeagyandanti-resonant angular frequeney aredescribed

by the following relations [3], [4]:
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The analytical form of the amplitude frequency characteristic can be easily derived by replacing
swith the jwin (5) and evaluating the absolute value to gain the following relation:
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Now, the values of the resonant and anti-resonant peaks can be easily derived by substituting (6) and
(7) into (8) respectively. Then, the following relations are obtained:
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The model was widely discussed in the previous work: [5] Relations (6), (7), (9), and (10) are used
to examine the accuracy of the identified parameters in the final part of this paper.

DATA PROCESSING

The used Welch method of the spectral analysis can be described by the following formula:
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The method is based on the averaging\operiodograms. Where periodograms are given as the
Fourier images of the cross-correlation and auto-correlation functions, respectively. For accuracy
increase, there is a window function applied on each periodogram. The window function is defined
as follows:

(11)
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wherelL is the length of the data block (periodogram). As mentioned in the Introduction section,
the spectral analysis serves only as the initial estimate for the Levenberg-Marquardt algorithm. This
algorithm minimizes the nonlinear least-squares problem:

(%, B) = ymlI3 = (f(x,B) = ym)" (f(x.B) =ym) = () " (1) (13)

wheref(x,B) is a set of nonlinear equations aBds a set of function parameters. Thg is a set of
measurements. For the optimum solutions, it is necessary that following partial derivatives are equal
to zero:
or’
0B
wherel is Jacobian matrix. The vectershould be equal to zero for the optimal solution. Levenberg-
Marquardt method presents the solution of this problem as:

r=Jr=v (14)
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whereA® is k-th estimate of Hessian defined as the= J7J. Parameteh is the value of a scale
factor and diagonal matri®® is an additional scale matrix. Finally®¥ is a gradient irk-th step.
According to: [6] theD is set aD®) = JT®JK) The estimate of the Jacobian matrix in each step of
the algorithm is calculated as follows:

K f(xBi+A)—f(x,Bj)

1= 2o A ' (16)

whereA is a user-defined tolerance value.

J

3.1 PARAMETERS EXTRACTION

For the initial parameter estimate, the values of resonance frequgranydanti-resonance frequency
wyr areused. An additional point at low frequenciesdy) is used as well. See FiguR® (a). The
point is half of decade distant from the anti-resonance frequency. Now, from (6), (7), (9), (10) and

with the additional point and with. o = an”;fgf’o onecan derive:
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4 EXPERIMENT DESCRIPTION

The experimental testbench is formed by the long torque shaft connected to the Permanent magnet
synchronous motor (PMSM) and the flywheel (1 kg and 10 cm diametral) placed at the other end
of the shaft. The electrical part of the PMSM is considered to be controlled by the Field-oriented
control strategy and its design is omitted in this paper. And the whole electrical part of the PMSM

is abbreviated into a simple torque generator followifig= i4Ki. Whereiq is the current applied

on the g-axis and; is the torque-current constant of the PMSM. The sampling frequency for the
measurement was set to 2 kHz. The g-axis current and the shaft velocity were measured and used
for the spectral analysis. As the input signal, a Pseudo Random Binary Sequence (PRBS) was used.
There were 65536 samples acquired and the length of the data block (length of the periodogram) for
the Welch analysis was set to 8192 samples. The complete algorithm was implemented at the dSPACE
DS1103 platform. In the Figure 2 (a) there are two estimates of the (5). The first one (red solid line)
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Figure 2: (a) - Blue dots represent curve obtained by the Welch method, red solid line stands for the
model with the initial estimate and the green line is the model given by the Levenberg-Marquardt
algorithm. The black cross is an additional point. (b) - Value of normalized cost function over the
iterations

is obtained with the initial parameter estimate based on the Welch method. The second one (green)
is obtained as the final value of the paramters estimate by the Levenberg-Marquardt algorithm. In
Figure 2 (b), there is the normalized value of the cost function with which the algorithm is optimized.
The cost function formula can be obtained from (13) as follows:

V() = X(1Gp(@,B)] ~ [Gple)) (1Gpl,B)] — [Gp(ca)]) (22)

whereN is the number of the curve data points obtained by the Welch method (blue points in Figure
2 (a)). One can see, that the convergence of the cost function is fast. The minimum of (22) is
found within the 5 iterations. The value afwas set toh = 0.75 and the value oA was set to

A =1-10"1. The ending condition of the algorithm is given by the maximum number of iterations
and the minimum change of tieparameters and minimum change of the cost funcoB). Both

are given by the value df.
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Parameter Welch Levenbeg-Marquardt theoretical
Jm 6.45-10° kg- n? 6.76-10 ° kg-n? 6.5-10 ° kg-m?
| 1.31-10 3 kg-n? 1.33-10 3 kg-m? 1.3-10 % kg-n?
Kk 6.75kg-m?.s 2 6.95kg-m?-s 2 7kg-m?.s?
b 2-10%kg-m?-s 1| 3.10%kg-m?-s ! [3.10°%kg-m?-s 1

Table 1: Parameters comparison

In Table 1, there are results compared with the theoretical values. Theoretical values are obtained
from the geometric attributes of the testbench (flywheel diameter, shaft length, shaft diameter, and
shaft shear modulus). The inertia higher values are caused by the omitted additional connections in
the testbench (flexible couplings etc.).

5 CONCLUSION

The main goal of this paper was to demonstrate the possible use of Welch spectrum analysis with
the Levenberg-Marquardt algorithm for the motor drive plants with the two-mass mechanical load
parameter estimation. The Welch method was used to create an initial estimate for the Levenberg-
Marquardt algorithm. This algorithm found the minimum of (22) within the 5 iterations. Obtained
results are presented and briefly discussed.
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