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Modeling of microfocused Brillouin light scattering spectra
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Although micro-focused Brillouin light scattering (BLS) has been used for more than 20 years, it lacks a
complete theoretical description. This complicates the analysis of experimental data and significantly limits the
information that can be obtained. To fill this knowledge gap, we have developed a semi-analytical model based
on the mesoscopic continuous medium approach. The model consists of the following steps: calculation of the
incident electric field and the dynamic susceptibility, calculation of the induced polarization, and calculation of
the emitted electric field and its propagation towards the detector. We demonstrate the model on the examples
of the measurements of thermal and coherently excited spin waves. However, the used approach is general and
can describe any micro-focused Brillouin light scattering experiment. The model can also bring new analytical
approaches to mechanobiology experiments or to characterization of acoustic wave-based devices.
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I. INTRODUCTION

Brillouin light scattering (BLS) is the inelastic scattering
of a photon on a quasiparticle, usually a phonon or magnon
[1,2]. However, due to the small frequency shift (typically in
the range of several hundred megahertz to tens of gigahertz),
it was a major challenge to confirm it experimentally. With the
advent of the tandem Fabry-Perot interferometer [3,4], which
allowed the measurement of such small frequency shifts with
very high contrast (1015), the BLS became the main tool for
the study of phonons (acoustic waves) and magnons (spin
waves). The typical BLS experiment was performed on bulk
samples or thin films. In order to optimize the signal, the mea-
surement was usually performed with the laser beam spanning
tens of micrometers. Such a large spot can be regarded as
a homogeneous plane wave, and thus the theory developed
to describe the experimental data used this as an integral
assumption [5–7].

However, at the beginning of the millennium, the advent
of nanofabrication techniques sparked interest in diffraction-
limited spatial scanning of quasiparticles. This was addressed
by so-called micro-focused Brillouin light scattering (μ-BLS)
[1,2]. In this imaging microscopy technique, the long work-
ing distance lens has been replaced by an objective lens
with a high numerical aperture. Such small probing spots,
combined with an automated 3D scanning stage, allowed
rapid progress in the field of spin wave research by studying
spin waves in nanostructures [8–12], spatially mapping their
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propagation characteristics, or even making time-resolved
measurements. The same methodology has also been applied
to the study of acoustic waves [13]. The spatial study of
spontaneously excited acoustic waves is also of great interest
in, e.g., mechanobiology, cancer treatment, or pharmaceutical
research [14–17]. The analysis of micro-BLS data is usually
based on fitting the position and width of the Brillouin peak.
However, due to the narrow focus of the light provided by
the high numerical aperture of the objective lens, the homo-
geneous plane wave approach cannot be used as in the case of
conventional BLS because it does not take into account the
spectral broadening and also does not correctly predict the
peak shift. Antonacci et al. used weighted incoherent super-
position of plane waves to account for spectral broadening of
the BLS peak [18]. However, this approach is suited only for
simple systems with a linear dispersion and since it disregards
the vector nature of electromagnetic fields and magnetization,
it fails to capture effects associated with polarization, e.g.,
it does not provide polarization of the scattered wave. To
correctly model and analyze BLS data of magnetic layers with
complex dispersion relations or, in general, any sample with
nontrivial light-matter coupling mechanisms, a more thorough
approach is required (see Fig. 1).

Here we address the lack of appropriate theoretical descrip-
tion by presenting a semi-analytical model for the calculation
of the resulting signal in μ-BLS experiments. Our approach
is based on the mesoscopic description of inelastic scattering
with a small frequency shift described by Landau and Lifs-
chitz [19]. The modeling follows the approach used for the
model of Mie-enhanced BLS [20,21]. However here, in the
case of a bare magnetic thin film, we formulate everything
using the semi-analytical approach and thus the μ-BLS signal
can be calculated within seconds which means that the model
can be used for fitting and optimization of the studied systems.
To model the μ-BLS spectra we use the approach presented in
[19, p. 413] applied to microfocused light. The model can be
divided to four steps, see flow chart in Fig. 1.
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FIG. 1. Schematics of the presented model and comparison of its output with simplified approach using weighted superposition of plane
waves. The k′ represents the wavevectors in the plane of a magnetic layer, while k represents the wavevectors of scattered free light. The
schematics provides a simplified picture and is not fully complete. For a more detailed discussion, please follow the explanation given in
the text.

The incident electric light is calculated for an ideal objec-
tive lens using the theory developed by Richards and Wolf
[22,23]. The dynamic susceptibility is calculated by assuming
the Lorentzian form of the spin-wave resonance and using the
zeroth perturbation theory of Slavin and Kalinikos [24,25],
but in principle any formulation of the dispersion relation
can be used, such as semi-analytical approaches [26] or sim-
ulation [27–29]. The incident electric field and the dynamic
susceptibility are then combined [via convolution (multipli-
cation) for calculations in reciprocal (real) space] to give the
polarization induced within the magnetic layer. Finally, the
angular spectrum of the radiation emitted by the polarization
current and collected by the objective is calculated using the
Green’s function formalism developed by Sommerfield [30]
and extended by Weyl [31].

For simplicity, in the following text we demonstrate our
model of μ-BLS on spin waves in a single 30 nm-thick (unless
otherwise stated) Permalloy layer. However, any configuration
of top/bottom layers can be assumed.

The paper is structured as follows: Section II presents the
overall structure of the model. Section III shows in detail
the procedure to obtain the incident electric field. Section IV
shows the calculation of the dynamic susceptibility. The in-
duced polarization is discussed in Sec. V. In Sec. VI the
electric field at the detector is obtained and the formation of
the detected signal is discussed. Section VII shows modeled
and experimentally obtained spectra of thermally and coher-
ently excited spin waves.

II. STRUCTURE OF THE MODEL

A. Calculation of the electric field distribution
in the magnetic layer

The first step is to calculate the electric field in the sample
(Ed). Usually this is easier to do in real space coordinates.

However, for subsequent calculations it is much more
convenient to transform it into Fourier space, where we
can write

Ed(ωl , k′) = F (Ed(ωl , r′)), (1)

where ωl is a frequency of light. The shape of the electric field
depends, for example, on the lens used (especially its numeri-
cal aperture), the wavelength of the light used, or the defocus
of the light. In addition, the substrate, the magnetic layer ma-
terial or some capping layers (e.g., antireflection coatings) can
modify the electric field distribution, but in the presented ap-
proach we neglect these contributions. If necessary, a numeri-
cal calculation of Maxwell equations using finite-elements or
finite differences methods can take these effects into account.

B. Calculation of the dynamic susceptibility

The dynamic susceptibility (χ̂) is an integral part of the
model for calculating BLS spectra. This quantity represents
the mechanism of interaction between the light and the ex-
citation of the matter. In the specific case of the interaction
between the spin waves and the light, this interaction is called
magneto-optical coupling. To calculate the dynamic suscep-
tibility, one needs to know the magnetization distribution as
a function of the wavevector and the frequency of the spin
waves

χ̂ ∝ M(ωm, k′). (2)

In the approach presented here, we use a simplified model of
Lorentzian oscillators in each k′ and linear spin-wave disper-
sion. However, if necessary, the full micromagnetic simulation
can be used to obtain the BLS spectra in (almost) any scenario.
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C. Calculation of polarization

The driving field and the dynamic susceptibility are used
to calculate the induced polarization in the magnetic layer by
their convolution.

P(ω, k) = Ed(ω, k) ∗ χ̂(ω, k). (3)

In general, the polarization can be induced with wavevec-
tors double the incident driving field, see the convolution in
Eq. (3). However, the possible states of the polarization in
k-space are still limited by the eigenstates of the spin waves,
i.e., they can only occur at the positions of the spin wave
resonance.

D. Transfer to the far field and calculation of the BLS signal

Now we need to propagate the polarization into the far
field. To do this, we use the Green’s function formalism. In
our case, the polarization source can be considered as the
sum of the dipoles (point sources); thus, by integrating over
them, the total electric field can be obtained. This can be
expressed as

EFF(ω, kp) = Ĝ(ω, kp, k′
p)P(ω, k′

p). (4)

However, this equation describes the emission of all wavevec-
tors, including those that do not reach the detector. For this
reason, subsequent trimming of the electric field is required,
e.g., trimming by the numerical aperture of the objective lens,
or assuming only wavevectors parallel to the optical axis after
passing through the objective lens.

To obtain the resulting BLS signal, the electric field must
be squared. The resulting quantity can then be fitted to or
compared with the acquired BLS signal.

III. CALCULATION OF THE ELECTRIC FIELD
DISTRIBUTION IN THE MAGNETIC LAYER

In this section we use the semi-analytical method devel-
oped by Richards and Wolf [22,23,32] to obtain the electric
field on the surface. We assume an ideal lens and a colli-
mated beam. For the calculation we use spherical coordinates
defined by angles φ and θ , but later we transform the solu-
tion to Cartesian coordinates for more convenient calculation,
see Fig. 2.

The field is given by the equation

E(ρ, ϕ, z) = ik0 f 2

2

√
n1

n2
E0e(−ik0 f )

⎛
⎜⎝

I00 + I02 cos 2ϕ

I02 sin 2ϕ

−2iI01 cos ϕ

⎞
⎟⎠, (5)

where k0 = 2π
λ

is the wave number of the laser light,
λ is its wavelength, n1 (n2) is the index of refraction
of the surrounding medium (sample under investigation),
E0 is incident electric field intensity, f is an effective
focal distance [33]. The integrals (I00, I01, and I02) are
given by

I00 =
∫ 	max

0
fw(	)(cos 	)1/2 sin 	(1 + cos 	)

× J0(kρ sin 	) exp (ik0z cos 	)d	, (6a)

Objective lens
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FIG. 2. Sketch of the calculation geometry for focal fields. In the
region of the collimated beam we use Cartesian coordinates as shown
in the sketch. The filling factor is the ratio between the sizes of the
incident beam and the back aperture (entrance pupil) of an objective
lens. The beam profile can be calculated in arbitrary z-plane.

I01 =
∫ 	max

0
fw(	)(cos 	)1/2 sin2 	

× J1(kρ sin 	) exp (ik0z cos 	)d	, (6b)

I02 =
∫ 	max

0
fw(	)(cos 	)1/2 sin 	(1 − cos 	)

× J2(kρ sin 	) exp (ik0z cos 	)d	, (6c)

where Jn(x) is the Bessel function of the nth-order fw(	) =
exp( −1

f 2
0

sin2 	

sin2 	max
), f0 is a filling factor (ratio between the sizes

of the incident beam and the back aperture of the objective
lens), ρ is a distance from center in polar coordinates. The
field is then transformed to the Cartesian coordinates.

The results for a laser wavelength of 532 nm, an objective
lens with a numerical aperture of 0.75 and a fill factor of 2 are
shown in Figs. 3(a)–3(c). The magnitude of the x component
[Fig. 3(a)] has full polar symmetry, while the magnitudes of
the y component [Fig. 3(b)] and the z component [Fig. 3(c)]
resemble fourfold and twofold symmetries respectively. The
magnitude of the x component is the largest. The maximum
value of the square field in the z component is ≈12.5× and
the y component is ≈715× smaller than the x component.
Thus, the x component (along the polarization axis) is the
most important for the calculation of the BLS signal in
most scenarios. However, in certain geometries (e.g., for
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FIG. 3. Semi-analytically calculated magnitude of Gaussian
beam. (a)–(c) The squared x- (a) y- (b) and z- (c) component of the
focal field of 00 Hermite-Gaussian mode.
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the out-of-plane magnetized thin film), its contribution may
cancel out and other components may become significant.

IV. CALCULATION OF THE DYNAMIC SUSCEPTIBILITY

This section introduces the procedure for obtaining Bloch
spectral density of states of thermally excited spin waves.
The term Bloch spectral density of states or Bloch function
[D(ω, k)] is often used for the function describing the den-
sity of states in frequency-wavevector space, i.e., [34,35]. We
present here a phenomenological approach, which can be used
together with any method for obtaining dispersion relation
together with the calculated (or estimated) lifetime of the spin
waves. This allows one to choose an appropriate method for
obtaining the dispersion relation, including numerical calcu-
lation, since the fully analytical method may give incorrect
results for, e.g., thick magnetic layer in the dipolar-exchange
region (where the product of the wave vector and the sample
thickness is comparable to 1).

To calculate the dispersion relation we use the zeroth per-
turbation model [24,25]:

ω2 = (ωH + A2ωMk2)(ωH + A2ωMk2 + ωMFn), (7)

where ω = 2π f is the spin-wave frequency, k is its wavevec-
tor, ωH = μ0γ Hext, ωM = μ0γ Ms, Ms is the saturation
magnetization, γ is the gyromagnetic ratio, μ0 is the perme-
ability of a vacuum, A is the exchange length,

Fn = Pn + sin(θ )2(1 − Pn[1 + cos(φ)2])

+ ωMPn(1 − Pn) sin(φ)2

ωH + l2
exωMk2

, (8)

where ϕ is the in-plane angle, ϑ is the out-of-plane angle,

Pn =
⎧⎨
⎩

Q2

k2 − Q4

k4
1
2

[
2

Qt (1 − exp(−Qt ))
]

n = 0

Q2

k2 − Q4

k4

[
2

Qt (1 − exp(−Qt ))
]

n �= 0
, (9)

and t , is the thickness of the sample. The spin-wave lifetime
(τ ) is calculated using phenomenological theory [36,37]

τ =
[

((αω + γμ0H�)
∂ω

∂ωH

]−1

. (10)

Now, with the knowledge of spin-wave eigenstates and
their lifetimes, we can proceed to the calculation of the Bloch
function. A complex circular dynamic magnetization (M) is
assumed (the possible ellipticity of the dynamic magnetiza-
tion will be assumed later by calculating the amplitude of the
spin wave mode).

M(ω, Q) = M ′
x(ω, Q) + iM ′

y(ω, Q). (11)

This complex circular magnetization now describes the possi-
ble spin-wave resonances. If we assume only one spin wave
mode with a specific in-plane wavevector, the frequency-
dependent complex magnetization will have Lorentzian
shape [38],

M(ω, Q) ∝ 1

(ω0 − ω)2 + (
2
τ

)2 + i
1

(ω0 − ω)2 + (
2
τ

)2 , (12)

where the width of the resonance is given by the spin-wave
lifetime τ . To obtain the Bloch function, we take the absolute

value out of the complex magnetization and, as we are inter-
ested in thermally excited spin waves, correct the resulting
function for the Bose-Einstein distribution (since we assume
that all Lorentzian oscillators have the same amplitude)

D(ω, Q) ∝
√

2nBE(ω)
1

(ω0 − ω)2 + (
2
τ

)2 , (13)

where the Bose-Einstein distribution is given by

nBE = 1

exp
(

h̄ω−μ

kbT

)
− 1

, (14)

μ is a chemical potential, kb is the Boltzman constant, h̄
is the reduced Planck constant, and T is a thermodynamic
temperature.

To obtain the out-of-plane and in-plane magnetization [39],
we need to multiply the solution by the spin-wave profile
amplitude

MIP(Q, ω, ξ ) = mQ,ρ (Q, ω, ξ )D(Q, ω), (15a)

MOOP(Q, ω, ξ ) = imQ,ξ (Q, ω, ξ )D(Q, ω). (15b)

In Fig. 4(a) we show the dispersion relation for all direc-
tions in the in-plane magnetized 30 nm-thick Permalloy layer
in 10 mT external field applied along the y axis. In Figs. 4(b)–
4(e) Bloch functions are shown for selected frequencies. At
3 GHz [Fig. 4(b)] the resonance is only in the so-called back-
ward volume direction (parallel to the applied field), i.e., there
is no intensity on the cross section through ky. For higher
frequencies (above ferromagnetic resonance frequency) the
resonance for DE geometry appears, see Figs. 4(c)–4(e). With
increasing frequency, one can observe that the linewidth in
kx, ky space becomes wider. This is especially visible for the
spin-wave modes with low wave numbers, see Figs. 4(b)–4(d).

V. CALCULATION OF THE POLARIZATION

In the continuum model, the inelastic scattering (shift of
the frequency of the scattered light) is caused by the dynamic
(time-dependent) susceptibility. In the studied case, we as-
sume magneto-optical coupling which is usually described by
two contributions: the so-called Voigt effect, which is linear
in magnetization, and the Cotton-Mouton effect, which is
quadratic in magnetization. The resulting susceptibility (χ̂MO)
can be written as

χ̂MO =

⎛
⎜⎜⎝

0 iMzQ −iMyQ

−iMzQ 0 iMxQ

iMyQ −iMxQ 0

⎞
⎟⎟⎠

+

⎛
⎜⎝

B1M2
x B2MxMy B2MxMz

B2MxMy B1M2
y B2MyMz

B2MxMz B2MyMz B1M2
z

⎞
⎟⎠, (16)

where Mx, My, Mz denote the magnetization vector compo-
nents, B1, B2 are Cotton-Mouton magneto-optical constants,
and Q is Voigt magneto-optical constant. For simplicity, in the
presented analysis we assume B1 = B2 = 0. Please note, that
in the cases where B1 �= 0 or B2 �= 0, the multiplication of two
dynamic magnetization components results in the inelastic
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FIG. 4. Full in-plane dispersion and Bloch functions of spin
waves. (a) Spin wave dispersion relation for all propagation di-
rections for in-plane magnetized 30 nm-thick Permalloy film. The
transparent planes depicts the frequency positions of the calculated
Bloch functions. (b)–(e) Calculated Bloch functions for 3 GHz (b),
6 GHz (c), 9 GHz (d), and 12 GHz (e). The external field was set to
10 mT and μ = −6.6 · 10−25 = −1THz

h .

shift on the double of the magnon frequency. This process
can be described by the scattering of one photon on two
magnons. But this effect is very weak in ferromagnets, and the
measured signal would probably be too low to be observed in
experiments [40].

In this model, the incident electric field Ed probes the
dynamic modulation of the susceptibility via magneto-optical
coupling, which gives the polarization inside the magnetic
material in the form [5,41,42]

P(t, r) = Ed(t, r)χ̂(t, r), (17)

where χ̂ = χ̂mat + χ̂SW(t, r) is a sum of the static material
susceptibility χ̂mat and of the additional dynamic contribu-
tion caused by spin waves χ̂SW(t, r). Here we emphasize that
modulations in the susceptibility caused by magnons are on a
vastly different time scale than the optical cycle of the probing
photons. Thus, from the light’s point of view, the situation is
similar to scattering on a static grating. As a consequence,
there is a mixing of the frequencies in both, temporal and
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FIG. 5. The calculation of the induced polarization at 6 GHz in
10 mT. (a)–(c) The squared Fourier-transformed induced polarization
x- (a), y- (b), and z-component (c).

spatial domains, namely

P(ω, kp, z) = χ̂(ωm, km, z)Ed(ω − ωm, kp − km, z), (18)

where ω is the frequency of the induced polarization, kp
is its in-plane (parallel to the magnetic layer) wave vector,
while ωm and km are their magnon counterparts. This equa-
tion represents the convolution of the Fourier images of the
susceptibility χ̂ and the driving field Ed. The vertical profile
of the dynamic magnetization (along z) depends on the exact
geometry and mode of the spin wave and should be taken into
account for precise calculation. In the analysis presented here,
we ignore this dependence. However, this approximation may
be insufficient in the case where there is a strong dependence
of the mode profile on the z coordinate, comparable to the
penetration depth of the light. This can be particularly true
for transparent materials such as ytrium-iron-garnet (YIG),
where the penetration length can be greater than the sample
thickness. However, this dependence can be introduced by
dividing the magnetic layer into several thin sublayers and
treating each as an independent polarization source. Another
approximation that can be safely made, since ω � ωm, is to
drop the exact dependence of the driving field on ωm. As
a consequence, it is sufficient to calculate the driving field
at a single frequency ω, which can significantly reduce the
computation time of the presented model, especially when the
driving field requires numerical simulation.

We have calculated the resulting polarization consider-
ing only the linear Voigt contribution using Eq. (18). We
can observe that the polarization current in the x compo-
nent [Fig. 5(a)] has an order of magnitude lower intensity
compared to the y and z components [Figs. 5(b) and 5(c)].
Note, that polarization currents are formed with wave vectors
inaccessible to free light (in this case k > 10 rad/µm).

VI. TRANSITION TO THE FAR FIELD
AND CALCULATION OF THE BLS SIGNAL

The polarization vector in Eq. (18) acts as a local radiation
source that eventually generates the detected BLS signal. The
contribution of a given spatial frequency to this signal is de-
termined by its ability to efficiently couple into the free space
continuum and pass through the optical setup towards the
detector. In the case of so-called k-resolved BLS, the spatial
frequencies are given by the wave vector of the incident light
and its angle with respect to the sample normal. In the case of
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FIG. 6. Schematics of the geometry for far-field transition. The
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of layers above (coating) and beneath the magnetic layer. The po-
larization (radiation source) is placed in the middle of the magnetic
layer. For simplicity, we assume for all materials μ = 1.

micro-focused BLS, the range of spatial frequencies that can
reach the detector is mainly limited by the numerical aperture
of the used objective lens.

The transition from the polarization source to the far field
can be expressed mathematically using the Green’s function
formalism

EFF(ω, kp) = Ĝ(ω, kp, k′
p)P(ω, k′

p). (19)

The dyadic Green’s function Ĝ(ω, kp, k′
p) embodies the

response of a system to a local source and can fully account
for the presence of any scattering object, substrate effects or
complex geometries. It relates the spatial frequencies (ω, k′

p)
of the polarization vector to the spatial frequencies (ω, kp)
of the generated electric field vector and the term dyadic
highlights its second rank tensor nature.

Here we provide a representation of the dyadic Green’s
function for a (possibly) multilayer continuous film (stratified
medium) with Gaussian illumination through the objective
lens. We use the theory developed by Sommerfield and
Weyl [30–32].

We assume infinite layers in the xy plane with broken sym-
metry in the z direction, as shown in Fig. 6. The superstrate
(air in our calculation) and the substrate are also semi-infinite
in the z direction. Between them we assume a stack of layers,
at least one of which is magnetic.

The dyadic Green’s function providing the electric field at
the position of the polarization source and expressed in terms
of individual plane waves reads

Ĝ(kp) = iμ0ω
2

2

∫∫ ∞

−∞
d2k′

pM̂
±
, (20)

where

M̂
± = 1

k2
s kzs

⎛
⎜⎝

k2
s − k2

x −kxky ±kxkzs

−kxky k2
s − k2

y ±kykzs

±kxkzs ±kykzs k2
s − k2

z

⎞
⎟⎠, (21)

ks is a wave vector in the magnetic material, and kzs =√
k2

s − k2
x − k2

y is its longitudinal projection. The choice of

the sign in (21) depends on whether we are dealing with
forward-propagating (+) or backward-propagating (−) waves
(we should stress that the polarization source radiates into
both half-spaces). This dyadic Green’s function allows us to
calculate the amplitudes of both propagating and evanescent
waves from all orientations of the polarization P. To properly
account for all the effects of reflection and refraction at the
interfaces between the different layers, each plane wave must
be multiplied by an appropriate Fresnel coefficient. In the case
of a single interface between two media indexed 1 and 2,
the Fresnel reflection [r(kx, ky)] and transmission [t (kx, ky)]
coefficients for p and s polarized waves are given by the
following set of equations:

rs(kx, ky) = kz1 − kz2

kz1 + kz2
(22a)

ts(kx, ky) = 2kz1

kz1 + kz2
(22b)

rp(kx, ky) = ε2kz1 − ε1kz2

ε2kz1 + ε1kz2
(22c)

tp(kx, ky) = 2ε2kz1

ε2kz1 + ε1kz2

√
ε1

ε2
(22d)

By employing the transfer-matrix method, the above coeffi-
cients can be generalized to provide the amplitudes of the
waves at any position within the stack, including the substrate
and the superstrate [43,44].

Since the collection of the BLS signal takes place in the
far-field and is limited only to the propagating part of the
plane wave spectrum, it is useful to recast the tensor (21) into
a form that better reflects the different treatment of the p- and
s-polarized wave: changing the output basis (i.e., the rows)
of the dyadic Green’s function to spherical coordinates and
recalling that the radial component of the propagating waves
within an isotropic medium vanishes, we can break (21) into
two distinct contributions:

M̂
±
s = 1

kzs

√
k2

x + k2
y

(−ky kx 0

0 0 0

)
(23a)

M̂
±
p =

⎛
⎝ 0 0 0

± kx

ks

√
k2

x +k2
y

± ky

ks

√
k2

x +k2
y

−
√

k2
x +k2

y

kskzs

⎞
⎠. (23b)

Note that the new output basis ensures that the resulting elec-
tric field vector now has only two components, Es and Ep,
which are directly related to the amplitudes of the propagating
p- and s-polarized waves generated within the magnetic layer.

By replacing (21) with (23) and introducing corresponding
Fresnel coefficients, we finally obtain an expression for the
dyadic Green’s function that fully accounts for the reflections
within our system and the subsequent out-coupling of the
emitted radiation to the far-field

Ĝ(kp) = iμ0ω
2

2

∫∫ ∞

−∞
d2k′

p

× [t+
s M̂

+
s + t−

s M̂
−
s + t+

p M̂
+
p + t−

p M̂
−
p ]. (24)
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After inserting (18) into (19) and recalling the fact that
in the absence of a scattering object, there is no momentum
transfer as the light leaves the stratified medium, the dark-field
angular spectrum becomes

EFF(ωmkm, ω, kp) =
∫

d2 Ĝ(ω, kp)χ̂(ωm, km )Ed(ω, km ).

(25)

Another important aspect of the BLS detection process is
the limited area from which the signal is collected. This is
equivalent to the statement that only rays virtually parallel
to the microscope’s optical axis can successfully reach the
detector. Assuming that the collection spot has a Gaussian
spatial profile h(x, y) = e−(x2+y2 )/w2

c , where wc is a waist of the
detection spot. The detectable portion of the far-field radiation
amounts to

EFF(r‖) = h(r‖)
∫

kp�k0NA
d2kpeikp·r‖EFF(kp), (26)

where the integration limits reflect the restrictions placed on
the spatial frequencies by the numerical aperture of the objec-
tive lens.

Finally, to estimate the strength of the BLS signal at a
particular frequency ωm, one has to sum up the contributions
from all magnons (i.e., integrate over km). The exact nature
of this summation depends on the coherence properties of the
magnon population. In the case of thermal magnons (which
are inherently incoherent), the proper procedure is to add
intensities originating from individual magnon contributions.
In the case of coherent magnons (excitation either by mi-
crostrip antenna or, e.g., by vortex core motion,), one must
account appropriately for the phase and sum of all waves
before calculating intensities. The modeled BLS signal for
thermal magnons (integration after squaring) reads

σ (ωm ) =
∫

d2r‖
∫

d2km

∣∣∣∣ h(r‖)
∫

kp�k0NA
d2kp eikp·r‖

∫
d2k′

p

× Ĝ(kp) χ̂(ωm, km )Ed(km )

∣∣∣∣
2

, (27)

while for coherent magnons (integration before squaring), we
get

σ (ωm ) =
∣∣∣∣
∫

d2r‖
∫

d2km h(r‖)
∫

kp�k0NA
d2kp eikp·r‖

∫
d2k′

p

× Ĝ(kp, k′
p) χ̂(ωm, km )Ed(k′

p − km )

∣∣∣∣
2

. (28)

VII. COMPARISON BETWEEN
THE MODEL AND EXPERIMENTS

In order to validate the presented theory, we compared the
predictions of the model with experimentally obtained data.
First, we compared the modeled and experimentally obtained
BLS spectra in different external magnetic fields. In the sec-
ond subsection we compared the experimentally estimated
detection sensitivity with the model predictions.

A. Thermal μ-BLS

By performing μ-BLS measurements of the thermally ex-
cited spin waves, we check the agreement of Eq. (27) with
experimental data. All measurements were performed on a
31.5 nm-thick NiFe layer. For modeling we used the same
set of material parameters as presented in [20]. We show
the experimental data in Fig. 7(a) and the modeled spectra
in Fig. 7(b). The amplitude of the modeled signal has been
adjusted to match the experimental data. The model and
experiment are in very good agreement. The experimental
and modeled spectra show a fundamental spin wave mode
(lower frequency) and a first perpendicular standing spin wave
(PSSW, higher frequency) mode. In both experiment and
model we observe a decrease in the amplitude of both modes
with increasing magnetic field and a frequency narrowing of
the fundamental mode spectra.

Figures 7(c) and 7(d) show the modeled and measured
spectra of the fundamental mode at 10 mT and 558 mT. In the
lower panel the peak has a sharp rising edge. This is caused
by the shallow dispersion relation of the backward volume dis-
persion branch, see the light blue dashed line in Fig. 7(c). This
shallow dispersion has a low group velocity and thus a high
density of states around the ferromagnetic resonance (FMR)
frequency. This results in a distinct peak in the BLS spectra
at this frequency. In contrast, at high magnetic fields (such as
558 mT) the situation is much more symmetrical around the
FMR frequency. There is not much difference in the group
velocity (and density of states) for spin waves propagating in
the Damon-Eshbach and backward volume directions. For this
reason, the BLS spectrum resembles a near-Gaussian shape
with a maximum located at the point of the FMR frequency.
Please note, that in the studied case, the maximum signal in
the peak originating from fundamental mode always lies in
the position of FMR frequency. The amplitude of the signal
originating from perpendicular standing spin waves was ad-
justed to match the experimental data.

B. Coherent μ-BLS

To test the coherently excited spin wave model, we fabri-
cated a 180 ṅm wide microstrip antenna on the NiFe layer.
We measured the intensity of the BLS while sweeping the
excitation frequency with a set power of 10 dBm in the ex-
ternal magnetic field of 50 mT, which was directed parallel to
the excitation microstrip, so that the spin waves propagate in
the Damon-Eshbach geometry. The spectra were acquired at
a distance of 1 µm from the antenna. The measured data are
shown in Fig. 8(a).

In a simplified view of this one-dimensional geometry
(where the spin waves are only excited by the excitation an-
tenna with a single wave vector and frequency), the acquired
BLS signal can be expressed as

σ (k) = �exc(k)�det (k), (29)

where �exc(k) is the excitation efficiency given by the antenna
geometry and �det (k) is a detection efficiency given by the
optical setup. The excitation efficiency can be roughly esti-
mated as the Fourier transform of the in-plane magnetic field
generated by the microstrip antenna. For our geometry this is
shown as the red line in Fig. 8(a).
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FIG. 7. Comparison between the experimentally obtained data and theoretical modeling of thermally excited spin waves. All data are for
31.5 nm-thick NiFe layer. (a), (b) BLS spectra in dependency to external magnetic field. Panel (a) shows the experimentally obtained data, and
panel (b) shows the data modeled with Eq. (27). (c), (d) Experimentally obtained and modeled BLS spectra for the external field of 30 mT (c)
and 558 mT (d). The signal visible in panel (a) and (d) at 34 GHz does not have any dependency on the applied magnetic field, and thus, it
does not originate from spin waves.

Now, knowing the experimentally obtained BLS intensity
σ (k) and the calculated �exc(k), we estimated the detection
function �det (k) of our μ-BLS, see blue squares in Fig. 8(b).
This sensitivity can also be modeled using Eq. (28), see
black solid line in Fig. 8(b). The modeled and experimen-
tally obtained detection functions are in good agreement, and
both have a detection edge (1 % of detection sensitivity) at
≈12 rad−1µm.

VIII. APPLICATIONS OF THE MODEL

In this section we discuss four examples of applications
of the presented model. All four cases are calculated for a
continuous thin film (single or double layer) and can therefore
be fully solved by the semi-analytical method presented here.
In the first example, we calculate the detection sensitivity for
coherently excited spin waves as a function of the numer-
ical aperture of the objective lens. In the second example,
we calculate the thermal signal and its total intensity as a
function of sample thickness and show that there is an op-
timal thickness of the magnetic thin film for which we can
obtain the maximum BLS signal. In the third example, we
demonstrate the possibility of increasing (and decreasing) the
BLS signal by appropriate selection of a silicon dioxide cover

layer, and in the fourth example, we calculate the decrease of
the thermal signal as a function of the thickness of a platinum
cover layer.

A. Detection sensitivity to coherent spin waves in dependence
to the numeric aperture of the objective lens

The numeric aperture has a pronounced effect on the
formed polarization in the material through the change of the
driving field Ed [see Eq. (17)], but it also determines the range
of wavevectors that can reach the detector [see Eq. (26)]. For
the detection sensitivity in μ-BLS experiments, numeric aper-
ture is crucial. The higher the numeric aperture is, the higher
wave numbers of spin waves can be detected. The calculated
μ-BLS spectra of 30 nm-thick NiFe layer with a varying
numeric aperture of the objective lens and filling factor 2 [45]
are shown in Fig. 9(a), and selected spectra are separately
plotted in Fig. 9(b). Indeed, we can observe the expected trend
of broadening detection sensitivity towards the higher wave
numbers [18]. We extracted the value, where the detection
sensitivity dropped to the 10 % of the maximal value, see
Fig. 9(c). The observed behavior is linear. The simple analytic
formula can be found to approximate this detection thresh-
old. We start with an approximate formula for waist of the
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FIG. 8. Comparison between the experimentally obtained data
and theoretical modeling of coherently excited spin waves. (a) Exper-
imentally measured BLS intensity (black line) of coherently excited
spin waves 1 µm away from 180 nm-wide antenna. The red line
shows the calculated excitation efficiency of the used antenna. The
top x-axis shows the wave number calculated by using the dispersion
relation. (b) Squares shows extracted detection efficiency of μ-BLS.
The solid line shows calculation based on Eq. (28).

beam spot

2w0 = 2λ

πNA
, (30)

where w0 is radius of a beam spot (waist), λ is a wavelength,
and NA is a numeric aperture of objective lens. Now, by
taking the Fourier transform of the beam spot, we can estimate
the detection sensitivity threshold as a half-width-at-the-tenth-
of-maximum (HWTM) of the transformed expression. This
leads to

HWTM =
√

2ln(2)
π

λ
NA ≈ 6.72

NA

λ
. (31)

This simple analytic formula agrees reasonably well with the
full theoretical description and can be used for quick estima-
tions of detectable wave numbers.

B. Thermal signal in dependence to the thickness of NiFe layer

The change in the thickness of the film does not affect
the frequency of ferromagnetic resonance (k = 0). However,
it dramatically affects spin wave dispersion, particularly spin
wave group velocities. Also, the spin-wave signal is propor-
tional to the interaction volume, which is decreased when
the thickness of the film is lowered. To obtain indecent elec-
tric field, the light propagation in the magnetic medium is

assumed to be exponentially attenuated on the way to the
material. This approach is a rather crude approximation as the
same attenuation is assumed for all directions of wavevectors,
and no influence on the shape of the electric field is consid-
ered. This approximation is introduced as a factor (F),

F =
∫ tmag

0
exp (−kexck0z)2dz, (32)

where tmag is thickness of the magnetic layer, kexc is the extinc-
tion coefficient of the magnetic material, and k0 is free space
wave number of the used light. The whole equation for the
BLS signal then reads as

σ (ωm ) =
∫

d2r‖
∫

d2km

∣∣∣∣ h(r‖)
∫

kp�k0NA
d2kp eikp·r‖

×
∫

d2k′
pĜ(kp, k′

p) χ̂(ωm, km )FEd(k′
p − km )

∣∣∣∣
2

.

(33)

This equation approximates magnetization dynamics with a
uniform precession angle across the thickness of the magnetic
layer. This is quite a strong approximation, especially in the
case of the quantized thickness modes. But it also neglects the
case of nonzero wave numbers or nonzero spin pinning on the
layer boundaries.

The resulting BLS spectra for NiFe layers with varying
thicknesses are shown in Fig. 9. The NiFe is metallic and
thus has strong attenuation of the light in the material, with
an extinction coefficient of kexc = 3.842.

In low magnetic fields (Bext = 10 mT), the turning point in
BV geometry is accessible by the μ − BLS, and this exhibits
itself as a strong signal in the lowest detected frequency as can
be seen across all thicknesses in Fig. 9(d). With increasing
thickness, we can observe broadening to higher frequencies.
This is caused by the increase in the group velocity of the spin
waves. In the high magnetic field (Bext = 500 mT), the BLS
spectrum is much more symmetrical, see Fig. 9(e).

In both magnetic fields, when the thickness of the layer
increases, the frequency of the first perpendicular-standing-
spin-wave mode decreases and slowly reaches the value of
ferromagnetic resonance. The higher perpendicular-standing-
spin-waves were not considered.

In Fig. 9(f), the intensities of all four peaks are inte-
grated. In integrated intensities of fundamental spin-waves
(solid lines), we can see that the signal strength reaches the
maximum the thickness of the magnetic layer around 25 nm
for a field of 500 mT, and 50 nm for a field of 10 mT. This
position of maximum signal is determined by the interplay
between the contribution of larger interaction volume and
from lower group velocity in thinner NiFe layers. However,
the interaction volume does not increase linearly with the
increasing thickness, and after reaching ≈70 nm is not in-
creased at all due to the substantial decay of the light in the
NiFe layer.

In the case of the first thickness mode (dashed lines), the
intensity is almost zero for low thicknesses as the frequencies
of these modes reach several terahertz. Due to the Bose-
Einstein distribution, the population of the magnons on these
frequencies is very low in comparison to the frequencies in the
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FIG. 9. Examples of applications of presented semianalytical model. (a)–(c) Dependence of the sensitivity of μ-BLS to coherently excited
spin waves. The panel (a) shows the BLS signal in dependence on the numeric aperture of the objective lens of coherently excited spin waves.
The panel (b) shows individual BLS spectra for NA = 0.1, 0.5, 0.75, 0.9. The panel (c) shows the extracted threshold wave number (90 % of
detection sensitivity) and a simple analytic formula. (d)–(f) Calculated μ-BLS signal for NiFe layer with varying thickness. In panel (d) [(e)]
the external field is set to 10 mT [500 mT]. The panel (f) shows the summed intensity of individual modes. (g)–(l) Calculated μ-BLS spectra
for NiFe layer covered by SiO2 (g)–(i), and platinum (Pt) (j)–(l) with varying thickness. In panels (g), (j), the μ-BLS spectra are shown in
linear scale, and selected thicknesses are shown in linear scale for SiO2 (h) and for Pt in logarithmic scale (k). In panel (i), (l) the summed
μ-BLS intensity is shown.
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order of several gigahertz. In contrast, as the group velocity
is increased in the range of the accessible wavevectors for
thicknesses above 40 nm, this results in the decrease of the
signal. These two factors cause the formation of the optimal
thickness for the signal strength at ≈50 nm.

C. Effect of the transparent cover layer

In some experimental scenarios, it is beneficial to put var-
ious materials on top of the magnetic layer to, i.e., engineer
magnetic properties of the investigated layer or to protect it
from the environment. These layers then affect the obtained
μ-BLS signal. With the presented model, we can estimate its
impact. The model takes into account all of the reflections on
material boundaries during the scattered light’s way out and
different adsorptions of the defined layers.

First, we consider the cover layer of SiO2. We assume
complex dielectric function ε = 2.1516 + i0.0058434 [46].
Due to the constructive interferences in the cover layer, the
μ-BLS signal can be enhanced in specific thicknesses [47],
see Figs. 9(g) and 9(h). This enhancement is homogeneous
across all magnon frequencies. In Fig. 9(j), we can observe
the period of the enhancement, that is roughly 190 ± 20 nm,
which is below the wavelength of the used light in the SiO2

(247 nm).

D. Effect of the metallic cover layer

In Figs. 9(j) and 9(k) the spectra with different thickness
of Pt cover layer are shown. The shape of the spectra is not
affected by the presence of a platinum layer (we do not take
into account any effect of platinum on magnetic properties,
just its effect on light propagation). However, the intensity of
the signal is decreased. With 50 nm of platinum the signal
is decreased by approx. 3 orders of magnitude. The summed
BLS signal has an exponential dependency on the platinum
thickness, see Fig. (9).

IX. CONCLUSION

The spectra obtained by μ-BLS have so far only been
analyzed qualitatively, without any insight into the forma-
tion of the signal. This severely limits the information that
can be extracted from these experiments. Usually, only the
intensity or the position of the BLS peaks are analyzed, but
not their exact shape. In addition, many researchers have
applied models developed for k-resolved BLS, which works
with large spot sizes, to μ-BLS, where spot sizes are usually
diffraction-limited. However, this assumption often leads to
incorrect conclusions, such as an overestimation of the detec-
tion sensitivity of μ-BLS.

Here we present a theoretical model for the calculation
of the μ-BLS signal. This model opens up completely new
ways of analyzing the spectra, including the analysis of their
exact shape. Its calculation is fast (less than a few seconds per
spectrum) and can therefore be used to fit any optical or mag-
netic parameter of the system. The model can also be used in
conjunction with micromagnetic simulations to correctly in-
terpret more complicated situations, such as nonlinear effects
like parametric pumping. By knowing the exact sensitivity to
specific wave vectors and by modeling the exact shape of the
acquired BLS spectra, a whole new set of phenomena can be
discovered and studied.

All data and code used to generate the presented figures are
available in the Zenodo repository [48].

ACKNOWLEDGMENTS

This research was supported by the Project No.
CZ.02.01.01/00/22_008/0004594 (TERAFIT) and by the
Grant Agency of the Czech Republic, Project No. 23-04120L.
CzechNanoLab Project No. LM2023051 is acknowledged for
the financial support of the measurements and sample fabrica-
tion at CEITEC Nano Research Infrastructure.

[1] T. Sebastian, K. Schultheiss, B. Obry, B. Hillebrands,
and H. Schultheiss, Micro-focused Brillouin light scattering:
Imaging spin waves at the nanoscale, Front. Phys. 3, 35
(2015).

[2] M. Madami, G. Gubbiotti, S. Tacchi, and G. Carlotti, Chapter
Two - Application of Microfocused Brillouin Light Scattering to
the Study of Spin Waves in Low-Dimensional Magnetic Systems,
edited by R. E. Camley and R. L. Stamps, Solid State Physics
Vol. 63 (Academic Press, 2012), pp. 79–150.

[3] S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, Con-
struction and alignment of a high performance multipass vernier
tandem Fabry–Perot interferometer, Rev. Sci. Instrum. 52, 1478
(1981).

[4] B. Hillebrands, Progress in multipass tandem Fabry–Perot in-
terferometry: I. A fully automated, easy to use, self-aligning
spectrometer with increased stability and flexibility, Rev. Sci.
Instrum. 70, 1589 (1999).

[5] M. G. Cottam, Theory of light scattering off the surface of
a Heisenberg ferromagnet, J. Phys. Condens. Matter. 9, 2137
(1976).

[6] J. R. Dutcher, J. F. Cochran, I. Jacob, and W. F. Egelhoff,
Brillouin light-scattering intensities for thin magnetic films
with large perpendicular anisotropies, Phys. Rev. B 39, 10430
(1989).

[7] J. Cochran, Brillouin light scattering intensities for patterned
magnetic thin films, J. Magn. Magn. Mater. 212, 40 (2000).

[8] A. V. Chumak, P. Kabos, M. Wu, C. Abert, C. Adelmann, A.
O. Adeyeye, J. Åkerman, F. G. Aliev, A. Anane, A. Awad
et al., Advances in magnetics roadmap on spin-wave comput-
ing, IEEE Trans. Magn. 58, 1 (2022).

[9] Q. Wang, R. Verba, B. Heinz, M. Schneider, O. Wojewoda, K.
Davídková, K. Levchenko, C. Dubs, N. J. Mauser, M. Urbánek,
P. Pirro, and A. V. Chumak, Deeply nonlinear excitation of self-
normalized short spin waves, Sci. Adv. 9, eadg4609 (2023).

[10] O. Wojewoda, J. Holobrádek, D. Pavelka, E. Pribytova,
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WOJEWODA, HRTOŇ, AND URBÁNEK PHYSICAL REVIEW B 110, 224428 (2024)

T. Brächer, B. Lägel, C. Dubs, S. Knauer, O. V. Dobrovolskiy,
P. Pirro, B. Hillebrands, and A. V. Chumak, Stabilization of
a nonlinear magnonic bullet coexisting with a Bose-Einstein
condensate in a rapidly cooled magnonic system driven by
spin-orbit torque, Phys. Rev. B 104, L140405 (2021).

[12] J. Chen, T. Yu, C. Liu, T. Liu, M. Madami, K. Shen, J. Zhang,
S. Tu, M. S. Alam, K. Xia, M. Wu, G. Gubbiotti, Y. M. Blanter,
G. E. W. Bauer, and H. Yu, Excitation of unidirectional ex-
change spin waves by a nanoscale magnetic grating, Phys. Rev.
B 100, 104427 (2019).

[13] M. Geilen, F. Kohl, A. Nicoloiu, A. Müller, B. Hillebrands, and
P. Pirro, Interference of co-propagating Rayleigh and Sezawa
waves observed with micro-focused Brillouin light scattering
spectroscopy, Appl. Phys. Lett. 117, 213501 (2020).

[14] R. Prevedel, A. Diz-Muñoz, G. Ruocco, and G. Antonacci,
Brillouin microscopy: An emerging tool for mechanobiology,
Nat. Methods 16, 969 (2019).

[15] F. Palombo and D. Fioretto, Brillouin light scattering: Applica-
tions in biomedical sciences, Chem. Rev. 119, 7833 (2019).

[16] F. Kargar and A. A. Balandin, Advances in Brillouin–
Mandelstam light-scattering spectroscopy, Nat. Photon. 15, 720
(2021).

[17] I. Kabakova, J. Zhang, Y. Xiang, S. Caponi, A. Bilenca, J. Guck,
and G. Scarcelli, Brillouin microscopy, Nat. Rev. Methods
Primers 4, 8 (2024).

[18] G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, Spec-
tral broadening in Brillouin imaging, Appl. Phys. Lett. 103,
221105 (2013).

[19] L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz,
and J. Sykes, Electrodynamics of Continuous Media (Elsevier,
Oxford, 2013), Vol. 8.

[20] O. Wojewoda, F. Ligmajer, M. Hrtoň, J. Klíma, M. Dhankhar,
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