Self-Sensing Properties of Fly Ash Geopolymer Doped with Carbon Black under Compression

Loading...
Thumbnail Image
Date
2021-08-04
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Altmetrics
Abstract
The development of smart materials is a basic prerequisite for the development of new tech-nologies enabling the continuous non-destructive diagnostic analysis of building structures. Within this framework, the piezoresistive behavior of fly ash geopolymer with added carbon black under compression was studied. Prepared cubic specimens were doped with 0.5, 1, and 2% carbon black and embedded with four copper electrodes. In order to obtain a complex character-ization during compressive loading, the electrical resistivity, longitudinal strain and acoustic emission were recorded. The samples were tested in two modes: repeated loading under low compressive forces and continuous loading until failure. The results revealed piezoresistivity for all tested mixtures, but the best self-sensing properties were achieved with 0.5% of carbon black admixture. The complex analysis also showed that fly ash geopolymer undergoes permanent deformations and the addition of carbon black changes its character from quasi-brittle to rather ductile. The combination of electrical and acoustic methods enables the monitoring of materials far beyond the working range of a strain gauge.
Description
Citation
Materials . 2021, vol. 14, issue 16, p. 1-11.
https://www.mdpi.com/1996-1944/14/16/4350
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO