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Abstract. This paper presents a new realization of a first-
order current-mode (CM) all-pass filter (APF) using the re-
cently proposed modern active building block (ABB), namely
the current differencing transconductance amplifier (CDTA).
The CM APF is made using minimum number of compo-
nents, namely a single CDTA and one grounded capacitor.
The circuit does not use any external resistors and offers
the advantages of current-tunable pole frequency, low input
impedance and high output impedance. Non-ideal analysis
and sensitivity analysis are provided and PSPICE simulation
results are included to verify the workability of the circuit.
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1. Introduction
The recently proposed current-mode (CM) active build-

ing block (ABB), namely the current differencing transcon-
ductance amplifier (CDTA) [1], has been found to be ver-
satile for CM signal processing and its use has reportedly
provided several circuit solutions. These primarily consist of
the design of CM filters [2], [3], [4], [5] and sinusoidal oscil-
lators (including quadrature and multi-phase oscillators) [6],
[7], [8], [9], [10]. The motivation of this paper is to propose
a minimum component CDTA based first-order CM all-pass
filter (APF). APFs are very important circuits for many ana-
log signal processing applications and are used, generally, in
phase equalization and for introducing a frequency depen-
dent delay while keeping the amplitude of the input signal
constant over the desired frequency range [11].

CDTA based first-order CM APFs have been proposed
earlier in [12], [13], [14]. However, the circuits proposed in
[12] and [13] use an external linear resistor and do not pro-
vide any electronic tunability of the pole frequency: ”Due
to the on-going trends to lower supply voltages and maintain
low-power operations, linear resistors have become too large
for on-chip integration in ultra-low-power environments and
hence, their use should be avoided” [15]. The virtually

grounded capacitors in [12] and [13], are also floating in the
non-ideal sense. Although the CM-APF circuit proposed in
[14] is ”resistor-less”, it uses two ABBs and a floating ca-
pacitor (in the non-ideal case). Apart from CDTA, a very
rich catalogue of CM APFs using different ABBs also exists
in the literature [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25]. However, a close investigation of the literature
reveals that the proposed circuits suffer from the following
weaknesses:

1. Excessive number of passive components (three or
more) in [17], [18], [19], [22], [23],

2. use of floating capacitors in [17], [20], [24], which is
not desirable for IC implementation,

3. non-availability of the current-output from a high out-
put impedance terminal in [20], [21], [24],

4. use of multiple ABBs in [18], [23] and
5. no inherent electronic tuning properties in [16], [17],

[18], [19], [20], [21], [22], [23], [25].

With this background, a new circuit is proposed here,
which overcomes the above drawbacks. The proposed cir-
cuit uses a minimum number of components, namely one
ABB and one grounded capacitor. A modified CDTA, called
ZC-CDTA (Z-copy CDTA) [26], has been used as the ABB
and the proposed circuit offers the following advantages:

1. Canonic number of components is employed to real-
ize a CM APF and the use of grounded capacitors fur-
ther makes the circuit suitable for monolithic integra-
tion as grounded capacitor circuits can compensate for
the stray capacitances at their nodes [27], [28],

2. current-tunable pole frequency by means of the exter-
nal bias current,

3. low input impedance and high output impedance make
the circuit suitable for cascading to synthesize higher-
order filters and

4. good active and passive sensitivities of the pole fre-
quency and gain of the filter.

With all the above stated advantages, the proposed cir-
cuit is a novel addition to the present repertoire of CM APFs
and applications of CDTA. The characteristics of the ABB
(ZC-CDTA) are discussed in the following section, followed
by the proposed CM APF circuit and finally, PSPICE cir-
cuit simulations are included to verify the workability of the
proposed circuit.
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2. Proposed Circuit
A Z-copy current differencing transconductance ampli-

fier (ZC-CDTA) is an ABB, ideally characterized by the fol-
lowing equations

Vp = Vn = 0, Iz = Izc = Ip− In, (1)
Ix+ = gmVz, Ix− =−gmVz

where gm represents the transconductance and is a function
of the bias current. The circuit symbol of ZC-CDTA is
shown in Fig. 1 and a possible bipolar implementation of
the circuit using [9] is shown in Fig. 2.

Fig. 1. Symbolic representation of ZC-CDTA.

A ZC-CDTA with three x terminals, along with one
grounded capacitor is used to create a first-order CM APF,
as shown in Fig. 3. Using (1), a routine analysis of the cir-
cuit yields the following transfer function

T (s) =
Io

Iin
=

sC−gm

sC +gm
. (2)

Clearly, the ideal transfer function T (s) has a unity gain
and a frequency dependent phase given by

6 T ( jω) = π−2tan−1(
ωC
gm

) . (3)

The angular pole frequency ωo = gm
C is tunable by

means of the bias current. Instead of using a ZC-CDTA with
three x terminals, another ZC-CDTA variant could be used
to create the circuit. This variant has two different inter-
nal transconductances gm1 and gm2 controlled by bias cur-
rents IB1 and IB2, respectively. A possible implementation of
this ZC-CDTA variant using second-generation current con-
veyors (CCIIs) and operational transconductance amplifiers
(OTAs) [1] is shown in Fig. 4. The CM APF created using
this ZC-CDTA variant is shown in Fig. 5 and a routine anal-
ysis of the circuit yields the following transfer function

Io

Iin
=

sC−gm2

sC +gm1−gm2
. (4)

It is evident from (4) that for the APF operation, the
transconductances have to satisfy the following condition

gm1 = 2gm2 (5)

Fig. 2. A possible bipolar implementation of ZC-CDTA.

Fig. 3. Proposed first-order CM APF.

Fig. 4. A possible implementation of the modified ZC-CDTA
using CCIIs and OTAs.

Fig. 5. CM APF using a modified ZC-CDTA.

Hence, the input bias currents IB1 and IB2 have to be
varied accordingly and the circuit suffers from critical cur-
rent matching conditions. Moreover, any desired change in
the angular pole frequency by means of the bias current IB2
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is not independent, since IB1 has to be simultaneously var-
ied to satisfy the condition of operation. Hence, the APF in
Fig. 3 seems to be a preferable circuit solution as it is free
from any input matching constraints. The non-ideal analysis
of the circuit in Fig. 3 is discussed in the following section.

3. Non-Ideal Analysis
For a complete analysis of the circuit, it is important to

take into account the following non-idealities of CDTA (as
pointed in [13]):

1.
Iz = αpIp−αnIn, Izc = βIz (6)

where αp, αn are the parasitic current transfer gains
from p, n to z terminal, respectively and β is the para-
sitic current transfer gain from z terminal to zc terminal.
All these gains slightly differ from their ideal values of
unity by current tracking errors.

2. The non-zero parasitic input impedances at terminals p
and n of the CDTA are represented by Rp and Rn.

3. The use of multiple x output terminals produces errors
in the copies of the currents. The bipolar implementa-
tion of the circuit using transistors with high current-
emitter gain and/or use of good bipolar mirrors (e.g.
with base-current compensation) to generate the multi-
ple copies of x currents, may alleviate the problem. An
accurate method of current tracking and providing mul-
tiple copies of a current could be found in [30] (Sec-
tion 3.3). In this paper we use a bipolar realization of
CDTA as provided in [9] which uses Wilson current
mirrors in place of simple current mirrors and thereby
reducing the tracking errors [31]. We model the vari-
ations/mismatch between the currents at x terminals,
such that γ1gm is the transconductance gain from the
z terminal to the x terminal connected to capacitor and
γ2gm & γ3gm are the transconductance gains from the z
terminal to the x terminals connected to the n terminal
CDTA. In the ideal case γ1 = γ2 = γ3 = 1, but in the
non-ideal case these values slightly differ from unity
by current tracking errors.

4. The parasitic resistance Rz and parasitic capacitance Cz
appear between the high-impedance z terminal of the
CDTA and ground. Although the stray/parasitic capac-
itance Cz can be absorbed into the external capacitor
as it appears in shunt with it, the presence of parasitic
resistance at terminal z would change the type of the
impedance which should be of a purely capacitive char-
acter.

5. The parasitic impedances appearing between the high-
impedance x terminals of the CDTA and ground. For
simplicity, the parasitic impedances for each of the
three x terminals are taken to be same, with parasitic
resistance as Rx and parasitic capacitance as Cx.

Considering all the above non-ideal effects, the transfer
function of the CM APF shown in Fig. 3 gets modified to

T (s) =
Io

Iin
= (7)

=
αpβ(s(C +Cz +Cx)+ 1

Rz
+ 1

Rx
− γ1gm)

s(C +Cz +Cx−2αnCx)+ 1
Rz

+ 1−2αn
Rx

+gm(αn(γ2 + γ3)− γ1)
.

It is evident from (7) that the effect of parasitic
impedances is subtractive in the denominator, but additive
in the numerator. If gm is sufficiently higher than 1

Rz
+ 1

Rx

and C� (Cz +Cx) and , then (7) could be approximated to

Io

Iin
≈

αpβ(sC− γ1gm)
sC +gm(αn(γ2 + γ3)− γ1)

(8)

This approximated transfer function now, has a fre-
quency dependent phase given by

6 T ( jω) = π− tan−1(
ωC

γ1gm
)− tan−1

(
ωC

gm(αn(γ2 + γ3)− γ1)

)
.

(9)

It is clear from (8) and (9), that both gain and phase of
the filter are affected by the parasitic current transfer gains
and hence a good design of CDTA (as in [9]) should be con-
sidered to alleviate the non-ideal effects. The sensitivity of
the angular ”pole” frequency (ωp) to the non-idealities and
external component is given as

Sωp
Rn,Rp,αp,β = 0, Sωp

gm = 1, Sωp
C =−1, (10)

Sωp
αn =

αn(γ2 + γ3)
αn(γ2 + γ3)− γ1

, (11)

Sωp
γ1 =

−γ1

αn(γ2 + γ3)− γ1
, Sωp

γ2 =
αnγ2

αn(γ2 + γ3)− γ1
,

Sωp
γ3 =

αnγ3

αn(γ2 + γ3)− γ1
. (12)

The sensitivity of the angular ”zero” frequency (ωz) to
the non-idealities and external component is given as

Sωz
Rn,Rp,αp,αn,β,γ2,γ3

= 0, Sωz
gm,γ1 = 1, Sωz

C =−1 . (13)

It should be noted that in the non-ideal case, the angular
”pole” frequency (that of the denominator) is different from
the corresponding angular ”zero” frequency (that of the nu-
merator) and thus this mismatch affects both the magnitude
and phase response of the circuit. Only under the condition
that αn(γ2 + γ3) = 2γ1, the gain of the filter corresponding
to the approximated transfer function in (8), can be taken as
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Fig. 6. (a) The magnitude response of the all-pass filter, (b) the
phase response of the all-pass filter.

Fig. 7. Time-domain response of the proposed all-pass filter.

NR100N: NPN (IS=121E-18, BF=137.5, VAF=159.4,
IKF=6.974E-3, ISE=36E-16, NE= 1.713, BR=0.7258,
VAR=10.73, IKR=2.198E-3, RE=1, RB=524.6, RBM=25,
RC=50, CJE=0.214E-12, VJE=0.5, MJE=0.28, CJC=0.983E-
13, VJC=0.5, MJC=0.3, XCJC=0.034, CJS=0.913E-12,
VJS=0.64, MJS=0.4, FC=0.5, TF=0.425E-8, TR=0.5E-8,
EG=1.206, XTB=1.538, XT1=2)
PR100N: PNP (IS=73.5E-18, BF=110, VAF=51.8,
IKF=2.359E-3, ISE=25.1E-16, NE=1.650, BR=0.4745,
VAR=9.96, IKR=6.478E-3, RE=3, RB=327, RBM=24.55,
RC=50, CJE=0.18E-12, VJE=0.5, MJE=0.28, CJC=0.164E-12,
VJC=0.8, MJC=0.4, XCJC=0.037, CJS=1.03E-12, VJS=0.55,
MJS=0.35, FC=0.5, TF=0.610E-9, TR=0.610E-8, EG=1.206,
XTB=1.866, XT1=1.7)

Tab. 1. NR100N and PR100N transistor parameters

K = αpβ. In that case, the sensitivity of all-pass filter gain
(K) [29] to the non-idealities and external component can be
analyzed as

SK
Rn,Rp,C,αn,γ1,γ2,γ3,gm = 0, SK

αp,β = 1 (14)

It is evident from (10) – (14) that all the sensitivity
values are no more than unity in magnitude and unlike in
[12] and [13], the angular pole frequency is insensitive to the
parasitic resistances Rp and Rn. Hence, the circuit exhibits
a good sensitivity performance. However, an exception to
this is the ωp sensitivity to αn, which implies that the angu-
lar pole frequency is highly sensitive to this non-ideality. As
pointed in [13] and [29], the parasitic current gains αp, αn

and β are frequency-dependent with a first-order low-pass
roll-off, the cut-off frequency dependent on the devices and
the technology used in implementing the ABB. The high fre-
quency performance/potential is, therefore, limited by the
actual circuit parameters and the technology used. The par-
asitic current transfer gains from terminal z to zc and in cre-
ating copies of currents from multiple x terminals, could be
reduced/eliminated by the method proposed in [30], where
multiple copies of a current could be generated with accu-
rate current tracking. The method, however, requires the use
of a low value auxiliary resistor within the CDTA.

4. Brief Discussion
The circuits proposed in this paper use a single ZC-

CDTA / modified CDTA with multiple x terminals and one
grounded capacitor to realize a first-order CM APF. As
pointed in the previous sections, the circuits suffer match-
ing/cancellation constraints and require a good design of
CDTA (e.g. [9]) to alleviate the non-ideal effects. However,
matching constraints/conditions are also present in most of
the counterparts, as in [17], [18], [19], [23], [24]. The previ-
ously reported APFs which do not require any critical match-
ing conditions as in [12], [13], [16], [9] and [25], how-
ever, do not provide any inherent electronic tuning proper-
ties. Thus, there is a trade-off. A resistor-less CM APF using
a single CDTA or any other ABB, one true grounded capac-
itor (not virtually grounded) and no matching constraints,
is yet to be reported in the literature. Creating such a CM
APF is in no way trivial and analog circuit designers and
researchers in the field should consider it as a challenging
problem.

5. Simulation Results
The proposed CM APF shown in Fig. 3 is simulated

in PSPICE using the bipolar implementation of CDTA as
provided in Fig. 2. The process parameters for PR100N and
NR100N bipolar transistors of ALA400 transistor array from
AT&T [32] have been used with±2.5 V voltage supply. The
transistor parameters have been shown in Tab. 1. The cir-
cuit was designed with C = 1 nF and with the bias currents
IA = IB = 50 µA and IC = 25 µA. It is evident from the
bipolar implementation shown in Fig. 2, that the transcon-
ductance gm = IB

2VT
, where VT is the thermal voltage whose

value is approximately 26 mV at 27◦C. With IB = 50 µA,
the transconductance is set at 0.96 mS and the ideal value of
the pole frequency (ωo = gm

C ) is 153.1 kHz. Although, the
design would vary with the change in operating temperature,
but this, however, should not be considered as a drawback,
as the designer has an electronic control over the circuit pa-
rameters through the bias current [29].

The magnitude gain response and phase response of
the filter are shown in Fig. 6(a) and Fig. 6(b) respectively.
The time-domain response of the proposed APF is shown
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in Fig. 7. A sine wave of 20 µA amplitude and 153.1 kHz
is applied as the input to the filter and the output is 89.6◦

phase-shifted, which is in correspondence with the theoreti-
cal value of 90◦.

6. Conclusions
A novel first-order current-mode all-pass filter using

current differencing transconductance amplifier (CDTA) is
presented. The circuit structure is canonic and consists of
one Z-copy CDTA (ZC-CDTA) and one grounded capac-
itor. The circuit offers the advantages of monolithic in-
tegration, current tunability of the pole frequency, low in-
put impedance, high output impedance and good sensitivity
performance. PSPICE simulation results have verified the
workability of the circuit.
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