
MULTI-CLASS WEATHER CLASSIFICATION FROM SINGLE
IMAGES WITH CONVOLUTIONAL NEURAL NETWORKS ON

EMBEDDED HARDWARE

Tomáš Bravenec
Doctoral Degree Programme (2), FEEC BUT

E-mail: xbrave01@stud.feec.vutbr.cz

Supervised by: Tomáš Frýza
E-mail: fryza@vut.cz

Abstract: The paper is focused on creating a lightweight machine learning solution for classification
of weather conditions from input images, that can process the input data in real time on embedded
devices. The approach to the classification uses deep convolutional neural networks architecture with
focus on lightweight design and fast inference, while providing high accuracy results. The focus on
creating lightweight convolutional neural network architecture capable of classification of weather
conditions also enables usage of the network in real time applications at the edge.

Keywords: deep learning, neural networks, computer vision, weather classification, machine learn-
ing, parallel computing, inference on edge, reduced precision computing

1 INTRODUCTION

The correct weather analysis is crucial for autonomous machines, as various weather conditions can
disrupt the proper function of such machines. Current systems use mostly a sensor arrays or cameras
to predict the weather conditions the machine is located in. This issue does not affect only autonomous
machines but transportation infrastructure too. Also various traffic accidents could be prevented by
better adjustment of driving to the current weather conditions with either not allowing to start au-
tonomous driving system in cars, auto pilot in airplanes etc, requiring full attention from the driver or
pilot while the autonomous systems are active or using different constraints for autonomous move-
ment. As the weather can be quite diverse, the approach using classic computer vision techniques is
not the best approach here, and the usage of deep neural networks is more suitable for learning the
weather patterns directly out of training data.

As weather is not generally changing too quickly and latency is not an issue, it is possible to offload the
computation from the device to servers in the cloud. There are situations the use of cloud computing
is not an option, either due to lack of connectivity or privacy and security reasons. In situations like
these, the inference has to be done on the same or closely connected device that captured the data.
This process of doing the computation, usually on embedded devices close to the sensors acquiring
the data is called a computing at the edge. For the usage of neural networks on edge devices, the
neural networks are trained on a wide training set of data representing all the required situations
either using a powerful server or desktop computer, due to the compute limitations of the embedded
devices, this approach saves a lot of time as training neural networks on embedded hardware would
be extremely time consuming and ineffective.

A lot of the related works use a binary classification, which means those solutions are capable of clas-
sifying only two weather conditions [1, 2], being either sunny or cloudy, sunny or raining etc. There
are also works doing multi-class weather classification [3,4] which mostly work with 3 classification
labels, adding either snowing or foggy conditions into the classification.

586



Figure 1: Example of images used for extension of the dataset containing rainy and snowy conditions

2 DATASET

The dataset used for training and testing the designed neural network architecture was created by
modifying existing multi-class weather dataset [5], which contains 1530 images, with another 1189
images. The original dataset contained 5 weather conditions, each represented by 200 to 300 images.
The weather conditions represented in the original dataset are cloudy, rainy, foggy, clear weather,
sunrise or sunset.

The author’s modification of the dataset was necessary as the original dataset did not include any
images including snowy conditions, so the dataset was extended with a new class with 619 training
images containing snowy weather. Example of snowy and rainy condition images used for the dataset
expansion are shown in Figure 1. To make the dataset more robust, the original classes were also
extended with about 100 to 200 additional images under Creative Commons licence scraped from the
internet.

3 IMPLEMENTATION

Due to the requirement of real time processing on embedded devices, the neural network was designed
and trained from scratch with embedded devices in mind. This means the deep neural network uses
relatively low amount of layers with small amount of trainable parameters. Bigger networks with
more parameters and layers were also tested but the result improvement at at most 1 % was not worth
the increase in size and complexity of the network. The architecture of the designed network is in
Table 1.

The training of the network was done using Quantization Aware Training (QAT) method, which adds
another constraint to the weights of the network, to allow them to be converted from the standard
32-bit floating point format into 8-bit fixed point precision format without significant loss in accuracy
of the network.

For the training itself the framework for deep learning applications TensorFlow 2 [6] was used, as it
allows conversion of the trained model into TensorFlow Lite model. It is a highly optimized version
of TensorFlow specifically designed to be ran in mobile applications and on embedded devices with
low compute performance.

4 EVALUATION AND TESTING

The testing of the designed convolutional neural architecture was done on a single board computer
NVIDIA Jetson Nano [7]. The 4-core CPU of NVIDIA Jetson Nano are built on an Arm A57 ar-
chitecture and they are clocked at frequency of 1.5 GHz. The NVIDIA Jetson series of single board
computers also contain desktop grade GPU cores even though in smaller numbers than their desktop
counterparts. The GPU is based on NVIDIA Maxwell architecture, and contains 128 CUDA cores
running at frequency of 0.9 GHz. The NVIDIA Jetson Nano contains 4 GB of DDR4 memory, which

587



Table 1: Designed convolutional neural network architecture

Layer Input Shape Output shape Activation Parameters

Convolutional 2D 224x224x3 222x222x16 ReLU 448
Max pooling 222x222x16 111x111x16 — 0
Convolutional 2D 111x111x16 109x109x8 ReLU 1160
Max pooling 109x109x8 54x54x8 — 0
Convolutional 2D 54x54x8 52x52x8 ReLU 584
Max pooling 52x52x8 26x26x8 — 0
Convolutional 2D 26x26x8 24x24x8 ReLU 584
Convolutional 2D 24x24x8 22x22x4 ReLU 292
Flatten 22x22x4 484x1 — 0
Fully connected 484x1 40x1 ReLU 19400
Fully connected 40x1 40x1 ReLU 1640
Fully connected 40x1 40x1 ReLU 1640
Fully connected 40x1 6x1 SoftMax 246

0 50 100 150 2000

38.1
137.0

Size [kB]

Comparison of weights quantization influence on the weights size of the neural network

Single Precision (32-bit)
Quantized Integer (8-bit)

Figure 2: Comparison of data type influence on the size of weights

is dynamically assigned to either the CPU or the GPU. The whole system is relatively low power and
consumes at most 10 W which makes it perfect compute system for applied computer vision projects.

Since the NVIDIA Jetson Nano has desktop class NVIDIA CUDA cores usable for general purpose
computing and parallel data processing acceleration, but TensorFlow lite does not support it, the
quantized model could not be tested on the Jetson Nano’s GPU. The model using standard 32-bit
floating point arithmetic was tested both using the CPU and the GPU.

When it comes to the size of the weights of the designed neural network, the usage of 8-bit quantized
integer weights made the model a lot smaller than while using the standard 32-bit floating point data
type, to be exact 3.6× smaller, which is expected as almost every weight is quarter of the original
size. The comparison of the weights size using reduced precision data type is in Figure 2 while the
comparison of accuracy as a whole and inference performance using standard 32-bit floating point
and quantized integer weights is in Figure 3.

4.1 STANDARD 32-BIT ARITHMETIC

From the accuracy point of view at the designed network, the results are quite reasonable for the small
size and efficiency of the network. The correct weather conditions with the network using 32-bit

588



0 10 20 30 40 50 60 70 80 90 100

Performance [FPS]

Accuracy [%]

0

5.7

81.7

7.5

81.7

71.2

80.8

Comparison of weights quantization influence on
the inference performance of the neural network

CPU: Quantized Integer (8-bit)
GPU: Single Precision (32-bit)
CPU: Single Precision (32-bit)

Figure 3: Comparison of data type influence on the inference performance

floating point arithmetic were predicted correctly in 81.67 % of all cases. The reason for almost 20 %
incorrect classifications is the variability of weather. There can be clouds in the sky even on a sunny
day, or snowflakes can be mistaken for rain drops and vice versa. The confusion matrix showing the
ground truth and predictions of the designed network are in Figure 4 a).

The inference speed of the standard model was not great at only 5.7 frames per second using CPU,
and 7.2 frames per second using GPU. The relatively small increase in performance using the GPU
acceleration is due to the small size of the designed neural network. In this network, memory transfers
(copy of the input data in and out of the memory space assigned to the GPU) take majority of the time
required for the processing which in the end does not give that big performance improvement.

4.2 QUANTIZED 8-BIT ARITHMETIC

The network using quantized 8-bit arithmetic, provides very similar results in terms of accuracy to the
non quantized network at 80.83 % of all predictions being correct, which is just 0.84 % worse than
using the non-quantized model. The confusion matrix of the quantized network is in Figure 4 b).

The performance gained by converting the model using TensorFlow Lite to use quantized integer
arithmetic provided massive bump in inference performance, by managing to get frame rate of 71.2
frames per second which is a lot higher than required for real-time processing.

5 CONCLUSION

The main focus of this paper was to design a system for weather classification, that would be simple
and lightweight enough to run on an embedded hardware. For this the training dataset was expanded
to contain almost double the amount of images. The designed neural network created using Tensor-
Flow is small and provides accurate results. While using traditional 32-bit floating point arithmetic,
the performance of the designed neural network was not great, even while using the integrated GPU
of the NVIDIA Jetson Nano, managing at most 7.5 frames per second. The usage of weights quan-
tization and fixed point arithmetic with TensorFlow Lite provided a lot better results as the neural
network managed to achieve better than real-time inference performance at 71.2 frames per second.
The designed neural network could possibly be expanded in the future to be capable of classification
of more weather conditions, like thunderstorm, sandstorm, hurricanes and more.

589



Figure 4: Confusion matrix of weather classification CNN: a) with 32-bit floating point arithmetic,
b) with 8-bit quantized integer arithmetic

ACKNOWLEDGEMENT

The research published in this submission was financially supported by the Brno University of Tech-
nology Internal Grant Agency under project no. FEKT-S-20-6325.

REFERENCES

[1] M. Elhoseiny, S. Huang, and A. Elgammal, “Weather classification with deep convolutional neu-
ral networks,” in 2015 IEEE International Conference on Image Processing (ICIP), 2015, pp.
3349–3353.

[2] C. Lu, D. Lin, J. Jia, and C. Tang, “Two-class weather classification,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2510–2524, 2017.

[3] Z. Zhang and H. Ma, “Multi-class weather classification on single images,” in 2015 IEEE Inter-
national Conference on Image Processing (ICIP), 2015, pp. 4396–4400.

[4] S. Jabeen, A. Malkana, A. Farooq, and U. Ghani Khan, “Weather classification on roads for
drivers assistance using deep transferred features,” in 2019 International Conference on Frontiers
of Information Technology (FIT), 2019, pp. 221–2215.

[5] V. Gupta, “Weather dataset,” https://www.kaggle.com/vijaygiitk/multiclass-weather-dataset,
2020, [Online; accessed 15-February-2021].

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015,
software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[7] Embedded Linux Wiki , “Jetson,” https://elinux.org/index.php?title=Jetson&oldid=543051,
2021, [Online; accessed 29-January-2021].

590


