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Abstract—The paper presents a general structure for realizing
current-mode (CM) fractional-order all-pass filters (FOAPFs)
using generalized first-kind five-port current conveyors (GCC5s).
The proposed circuit topology employs two GCC5s and mini-
mum number of passive components, i.e.. one resistor and one
fractional-order capacitor, both in grounded form. A total of
eight CM FOAPFs using second-generation current conveyor
are derived, which are capable of providing simultaneously both
inverting and non-inverting current-outputs from high impedance
terminals. A theoretical study of a variant created using universal
current conveyor is provided, which verify the concept of the
proposed circuit topology.

Index Terms—all-pass filter; APF; current-mode; fractional-
order filter; generalized first-kind five-port current conveyor;
GCC5; universal current conveyor; UCC

I. INTRODUCTION

Current conveyors (CCs) have proved to be one of the most

versatile active building blocks (ABBs) in circuit theory and

have received considerable attention in realizing wide variety

of circuit solutions [1], [2]. These include first-order filters,

biquadratic filters, impedance simulators (including induc-

tor simulators and capacitance multipliers), chaotic circuits,

proportional-integral-derivative controllers, sinusoidal oscilla-

tors, precision rectifiers and non-linear circuits for squaring,

square-rooting and vector summation. The motivation of this

paper is to extend the knowledge about current-mode (CM)

fractional-order all-pass filters (FOAPFs) and propose a new

general topology using a generalized first-kind five-port cur-

rent conveyor (GCC5) [3] and minimum passive components.

All-pass filters are very important circuits for many analog

signal processing applications. These are generally used in

phase equalization and for introducing a frequency dependent

delay while keeping the amplitude of the input signal constant

over the desired frequency range [4]–[51]. The proposed

circuit topology employs two GCC5s and only two passive

components, namely one virtually grounded resistor and one

virtually grounded capacitor. Both the passive components

are grounded and the use of grounded capacitor makes the

circuit suitable for monolithic integration. Limiting our study

to second-generation current conveyor designs only, a total

of eight FOAPFs have been derived from the topology. All

variants are capable of simultaneously providing two explicit
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current outputs from high impedance terminals and thus can

realize both inverting and non-inverting APFs without any

change of the circuit configuration. A theoretical study of

the selected variant created using universal current conveyor

(UCC) [52] has been included to verify the concept of the

proposed circuit.

II. CIRCUIT DESCRIPTION

A. The Generalized Current Conveyor (GCC)

In the general design of frequency filters and oscillators with

CCs it is of advantage to use the classical generalized current

conveyor (GCC). Using the GCC, authors in [3] introduced

new classification for CCs. In their viewpoint, the classification

of CCs by generations is not suitable. For example, the third-

generation CC differs from the first-generation CC by the sign

of one port current only and the term ‘second-generation’

does not in fact denotes a development stage but a certain

property. According to this classification, the number of input

ports X specifies the conveyor order, the number of all

auxiliary ports Y determines the conveyor kind, and the

number of output ports Z to which an independent current iX
is conveyed classifies the conveyor class. This classification

has not undertaken yet, however, some of defined novel types

of GCCs could be still expanded in the future. One of them is

the generalized first-kind five-port current conveyor (GCC5)

[3], which schematic symbol is shown in Fig. 1.

Relations between the individual terminals of the GCC5 can

be described by the following matrix equation:⎡
⎢⎢⎢⎢⎣

vX
iY
iZ1
iZ2
iZ3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 a 0 0 0
b 0 0 0 0
d1 0 0 0 0
d2 0 0 0 0
d3 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

iX
vY
vZ1
vZ2
vZ3

⎤
⎥⎥⎥⎥⎦ , (1)
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Fig. 1. Generalized first-kind five-port current conveyor



where a, b, d1, d2, d3 are the conveyance coefficients of the

GCC5 that can be substituted by the values: a ∈ {–1, +1},

b ∈ {–1, 0, +1}, and di ∈ {–1, +1} for i = 1, 2, 3. If in

(1) a = +1, we consider a conventional (non-inverting) CC,

while a = –1 characterizes an inverting current conveyor (ICC)

[2]. With b = +1 the first-generation current conveyor (CCI

or ICCI) [2] can be realized. Similarly, the second-generation

CC (CCII or ICCII) [2] can be realized, if the b = 0 and

the third-generation CC (CCIII or ICCIII) [2], when b = –1.

Eventually, when di = +1 we speak about a positive current

conveyor, which is denoted by the “+” sign following the

schematic symbol (e.g. ICCIII+), when di = –1, we consider

the negative current conveyor, which is denoted by the “–”

sign (e.g. CCI–). In general, the GCC5 represents 24 different

types of multiple-output CCs of different generations.

B. The Universal Current Conveyor (UCC)

As it was mentioned above, the GCC5 is just a general

tool for the initial filter design. For further implementation

and simulation of the selected filter topology proposed in

the first step using GCC5s, the universal current conveyor

(UCC) [52] can be used. In 2000, the UCC was designed

and developed using the CMOS 0.35 μm technology under the

designation UCC-N1B 0520 and produced in cooperation with

ON Semiconductor Czech Republic, Ltd. It is an eight-port

active element that schematic symbol is shown in Fig. 2. Anal-

ogous to differential difference current conveyor (DDCC) [2]

or to differential difference complementary current conveyor

(DDCCC) [2], the UCC has three high-impedance voltage

inputs Y (one differencing - Y2, and two additive - Y1, and

Y3), one low impedance input X, and four current outputs

(Z1+, Z1−, Z2+, Z2−). Outputs Z1−, Z2− are inverse to

outputs Z1+ and Z2+.

Relations between the individual terminals of UCC can be

described by the following hybrid matrix:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

iY1

iY2

iY3

vX
iZ1+
iZ1−
iZ2+
iZ2−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
β1 −β2 β3 0 0 0 0 0
0 0 0 α1 0 0 0 0
0 0 0 −α2 0 0 0 0
0 0 0 α3 0 0 0 0
0 0 0 −α4 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vY1

vY2

vY3

iX
vZ1+
vZ1−
vZ2+
vZ2−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2)

where βk = 1 − εvk and αj = 1 − εij (k = 1, 2, 3 and

j = 1, 2, 3, 4) are the non-ideal voltage and current gains,

respectively, and εvk (|εvk| � 1) denote voltage tracking
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Fig. 2. Schematic symbol of universal current conveyor

errors and εij (|εij | � 1) denote current tracking errors of

the UCC, respectively.

By connecting or grounding suitable terminals of the UCC,

it helps to realize different generations and types of current

conveyors with single low impedance current input X [52].

Moreover, as it is mentioned above, the UCC can be also

used for realization of 24 different types of multiple-output

CCs of different generations, defined by the GCC5 (excluding

those 12 that have three plus or three minus outputs Z).

The multiple-output current follower (MO-CF) [53] can be

also realized by the UCC when only current input X and

all four current outputs Z are used, while voltage inputs are

connected to the ground. Implementation of the balanced-

output operational transconductance amplifier (BOTA) using

UCC is another option [54]. In this case, voltage inputs Y1

and Y2) are used and admittance GK is connected to current

input X in order to represent transconductance gm. Terminals

Z1+ and Z1− are used as current outputs.

III. GENERAL VIEW ON CM FOAPFS AND

DERIVED CIRCUITS

The proposed general CM FOAPF using two GCC5s,

grounded resistor, and grounded fractional-order capacitor

(FoC) [5], [12], [55] with pseudo-capacitance Cα (0 < α < 1)

of impedance ZCα
(s) = 1/Cαs

α is shown in Fig. 3.

Routine analysis yields to current transfer functions (TFs)

that can be expressed in following general forms:

T1(s) =
Io1
Iin

=
a2d23s

αCα + a1d12G

a2sαCα(b2 + d21) + a1G(b1 + d11)
=

=
a2d23s

αCαR+ a1d12
a2sαCαR(b2 + d21) + a1(b1 + d11)

, (3)

T2(s) =
Io2
Iin

=
a2d22s

αCα + a1d13G

a2sαCα(b2 + d21) + a1G(b1 + d11)
=

=
a2d22s

αCαR+ a1d13
a2sαCαR(b2 + d21) + a1(b1 + d11)

. (4)
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Fig. 3. Proposed general current-mode all-pass filter



TABLE I
CONVEYANCE COEFFICIENTS OF GCC5S

Variant no.
1GCC5 2GCC5

a1 d11 d12 d13 a2 d21 d22 d23
#1 1 1 1 –1 1 1 1 –1
#2 1 1 1 –1 –1 –1 –1 1
#3 1 –1 –1 1 1 –1 –1 1
#4 1 –1 –1 1 –1 1 1 –1
#5 –1 1 1 –1 1 –1 –1 1
#6 –1 1 1 –1 –1 1 1 –1
#7 –1 –1 –1 1 1 1 1 –1
#8 –1 –1 –1 1 –1 –1 –1 1

To obtain an inverting and a non-inverting all-pass filter

in the same configuration the following conditions must be

fulfilled in (3) and (4):

b1 = b2 = 0, (5)

a1a2d11d21 = 1, d21d22 = 1, d21d23 = −1, (6)

d11d12 = 1, d11d13 = −1. (7)

From (5) it is evident that in this work only the second-

generation CCs are considered. Eight different variants satisfy

conditions (5)–(7) and conveyance coefficients of GCC5s are

given in Table III. In all eight cases both inverting (3) and non-

inverting (4) CM APFs can be realized with the same circuit

topology.

IV. THE DESIGN EXAMPLE AND ITS

CONCEPTUAL VERIFICATION

The variant #7 using ideal UCCs (βk = 1 and αj = 1 for

k = 1, 2, 3 and j = 1, 2, 3, 4 ) is shown in Fig. 4. Current

TFs of the circuit are given as follows:

T1(s) =
Io1
Iin

= −sαCα −G

sαCα +G
= −sαCαR− 1

sαCαR+ 1
, (8)

T2(s) =
Io2
Iin

=
sαCα −G

sαCα +G
=

sαCαR− 1

sαCαR+ 1
. (9)

As it is seen from these equations, both inverting (8) and

non-inverting (9) types of CM FOAPF can be realized with

the same circuit topology. The magnitude characteristic of both

type CM FOAPFs can be expressed after replacing the sα by

ωα[cos
(
απ
2

)
+ j sin

(
απ
2

)
] as:

|T1(jω)| = |T2(jω)| =

=

√
ω2αCα

2R2 − 2CαRωα cos
(
απ
2

)
+ 1

ω2αCα
2R2 + 2CαRωα cos

(
απ
2

)
+ 1

, (10)

while the phase responses of the filter are given as:

∠T1(jω) =

= ∠
[
1− CαRωα cos

(
απ
2

)]
+ jCαRωα sin

(
απ
2

)[
1 + CαRωα cos

(
απ
2

)]
+ jCαRωα sin

(
απ
2

) , (11)
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Fig. 4. Proposed inverting and non-inverting current-mode APF using UCCs:
variant #7

∠T2(jω) =

= ∠
[
CαRωα cos

(
απ
2

)− 1
]
+ jCαRωα sin

(
απ
2

)[
CαRωα cos

(
απ
2

)
+ 1

]
+ jCαRωα sin

(
απ
2

) . (12)

Hence, the phase (11) and (12) of current TFs alter from

0◦ to −180◦ and 180◦ to 0◦, respectively, while ω changes

from 0→∞. Finally, the resulting pole (ωp,α) and zero (ωz,α)

frequencies are evaluated. The resulted expressions are:

ωp,α =

⎧⎪⎪⎨
⎪⎪⎩

[
− cos

(
απ
2

)−√
cos

(
απ
2

)2 − 1

]
CαR

⎫⎪⎪⎬
⎪⎪⎭

α−1

, (13)

ωz,α =

⎧⎪⎪⎨
⎪⎪⎩

[
cos

(
απ
2

)−√
cos

(
απ
2

)2 − 1

]
CαR

⎫⎪⎪⎬
⎪⎪⎭

α−1

. (14)

To verify the theoretical study, the proposed all-pass filter

has been numerically validated. From above analysis it is

evident that first-order APF exists only at α = 1. However,

both magnitude and phase responses are dependent on value

of α. MAPLE plot given in Fig. 5(a) shows the effect of

FoC order in range α = {0 to 1} on magnitude responses

of the filter. Subsequently, the effect of α = {0.25, 0.5, 0.75}
of FoC (that having the same impedance @fp,z = 1 MHz and

∓90◦ phase shifts) on phase responses vs. first-order responses

are depicted in Fig. 5(b). Here, resistor and capacitor values

used are as follows R = 10 kΩ, C0.25 = 2 μF · sec−0.75,

C0.5 = 39.9 nF · sec−0.5, C0.75 = 796.1 pF · sec−0.25, and

C1 = 15.9 pF, respectively.
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Fig. 5. FOAPF (a) magnitude and (b) phase responses for different α.

V. CONCLUSION

The paper presents a general design of CM FOAPFs using

GCC5s. The circuit topology is versatile and a total of eight

variants have been derived from the general topology; all of

which are capable of simultaneously realizing both inverting

and non-inverting all-pass filtering functions. The variant #1 is

same as that in [4]. Considering only ICCII-based topologies

(variants #6 and #8) our literature survey has showed that

no such CM APF exists in the open literature. A theoreti-

cal study of the selected variant #7 created using universal

current conveyors has been included to verify its concept. It

is expected that the used general design methodology is of

wider use to the circuit designers and researchers in the field

and such a technique is further used for designs of biquad

filters and sinusoidal oscillators. Future works will be focused

on following this direction.
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