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Abstract. The paper is aimed at determination of formant 
features (FF) which describe vocal tract characteristics. It 
comprises analysis of the first three formant positions 
together with their bandwidths and the formant tilts. Sub-
sequently, the statistical evaluation and comparison of the 
FF was performed. This experiment was realized with the 
speech material in the form of sentences of male and fe-
male speakers expressing four emotional states (joy, sad-
ness, anger, and a neutral state) in Czech and Slovak lan-
guages. The statistical distribution of the analyzed formant 
frequencies and formant tilts shows good differentiation 
between neutral and emotional styles for both voices. 
Contrary to it, the values of the formant 3-dB bandwidths 
have no correlation with the type of the speaking style or 
the type of the voice. These spectral parameters together 
with the values of the other speech characteristics were 
used in the feature vector for Gaussian mixture models 
(GMM) emotional speech style classifier that is currently 
developed. The overall mean classification error rate 
achieves about 18 %, and the best obtained error rate is 
5 % for the sadness style of the female voice. These values 
are acceptable in this first stage of development of the 
GMM classifier that should be used for evaluation of the 
synthetic speech quality after applied voice conversion and 
emotional speech style transformation. 
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1. Introduction 
Emotion identification in speech depends on the cho-

sen set of features extracted from the speech signal. These 
features are systematically divided into segmental and 
supra-segmental ones [1]. Short-term segmental features 
derived from the speech frames with short duration are 
usually in relation with the speech spectrum. These include 
traditional features like linear predictive coefficients 
(LPC), line spectral frequencies, mel-frequency cepstral 

coefficients (MFCC), or linear prediction cepstral coeffi-
cients (LPCC) [2]. 

During pleasant emotions the larynx and the pharynx 
are expanded, the vocal tract walls are relaxed, and the 
mouth corners are retracted upward. The result is falling 
first formant and raised resonances. For unpleasant emo-
tions the larynx and the pharynx are constricted, the vocal 
tract walls are tensed, and the mouth corners are retracted 
downward. The result is more high-frequency energy, 
rising first formant, and falling second and third formants 
[3]. We can conclude that the first formant and the higher 
formants of emotional speech shift in opposite directions. 
For pleasant emotions the first formant shifts to the left, 
and the higher formants to the right. For unpleasant emo-
tions the opposite situation occurs: the first formant shifts 
to the right, and the higher formants to the left. 

Spectral features like MFCC or LPCC together with 
energy and prosodic parameters are most commonly used 
in voice and emotional speech classification [4]. On the 
other hand, in automatic speech recognition (ASR) systems 
based on the hidden Markov models (HMM) approach [5], 
the acoustic vector comprises such components as the for-
mant central frequencies and bandwidths. Relative position 
of formants and formant trajectories can be used as the 
main indicator for speech classification in the voiced parts 
[6]. Together with complementary spectral features (spec-
tral flatness and spectral entropy), also prosodic parameters 
(F0, microintonation, jitter, shimmer) will be used for clas-
sification of emotional speech types in our classifier based 
on the Gaussian mixture models (GMM) principle [7] that 
is currently developed. 

In our experiments we performed statistical analysis 
and comparison of the formant features (FF) of male and 
female emotional speech representing joy, sadness, anger, 
and a neutral state in Czech and Slovak languages. It com-
prises analysis of the first three formant positions together 
with their bandwidths and the formant tilts [8]. In the case 
of the first three formant positions the histograms of distri-
bution were also calculated and the extended statistical 
parameters (skewness and kurtosis) were subsequently 
determined from these histograms. To confirm the disjunc-
tion of obtained data groups for GMM recognition [9], 
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these histograms were further evaluated by the analysis of 
variances (ANOVA) approach [10] and the hypothesis tests 
[11] were used for numerical matching. 

2. Subject and Method 
The formant features consisting of the basic fre-

quency parameters as the first three formant positions and 
their bandwidths as well as the complementary parameters 
(the formant tilts defined as directions and angles between 
the first three spectral maxima of the smoothed envelope) 
can be calculated by several techniques. In practice two 
approaches of the basic FF determination are mostly ap-
plied: the first one uses calculation from the complex roots 
of the LPC polynomial; the second one consists in finding 
of the local maxima of the smoothed spectral envelope 
where its gradient changes from positive to negative. 

2.1 Smoothing of Spectral Envelopes 

Mostly the formant positions and their bandwidths are 
determined from the smoothed envelope of the voiced parts 
of the speech signal. To obtain the smoothed spectral 
envelope, the mean periodograms of the chosen regions of 
interest (ROI) in the voiced parts of the speech signal can 
be computed by the Welch method [12]. By this approach 
we obtain an estimation of the power spectral density 
(PSD) of the input speech signal – it means the periodo-
gram that uses an NFFT-point FFT to compute the power 
spectral density as S(ejω) / fs where fs is the sampling fre-
quency. 

The smoothed spectral envelope of the speech signal 
can also be determined during the cepstral analysis. The 
cepstral analysis of the speech signal is performed in the 
following way: first, the complex spectrum using the FFT 
algorithm is calculated from the input samples (after seg-
mentation and weighting by a Hamming window). In the 
next step, the power spectrum is computed and the natural 
logarithm is applied. Application of the inverse FFT algo-
rithm gives the symmetric real cepstrum. Limitation to the 
first N0

 + 1 cepstral coefficients represents an approxima-
tion of the log spectrum envelope [13]. 

An autoregressive (AR) model is well known in 
speech processing as an LPC model being an all-pole 
model of a vocal tract. The autocorrelation method uses the 
Levinson-Durbin recursion to compute the parameters ak 
describing the speech spectral envelope in dependence on 
the chosen order NA of the AR model. 

2.2 Calculation of Formant Features 

Although the formant frequencies differ to some ex-
tent for different speakers and their ranges are overlapped 
[14] the male voice vowel formant areas without overlap 
can be determined: F1  250÷700 Hz, F2  700÷2000 Hz, 
F3  2000÷3200 Hz [15]. Using the general knowledge of 

[14] that females have on average 20 % higher formant 
frequencies than males, the female voice vowel formant 
areas without overlap will be: F1  300÷840 Hz, 
F2  840÷2400 Hz, F3  2400÷3840 Hz. We apply two 
methods for determination of the basic formant features: 

1. Estimation of the formant frequencies and their band-
widths directly from the complex roots of the LPC 
polynomial A(z)  poles of the LPC transfer function. 
Using the sampling frequency fs, the formant fre-
quency Fn and the 3-dB bandwidth Bn in [Hz] are 
determined as 
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2. For the formant positions as the first three local 
maxima of the smoothed spectral envelope where its 
gradient changes from positive to negative, the corre-
sponding bandwidths are obtained as the frequency 
intervals between the points of the 3-dB decrease of 
the magnitude spectrum from the formant amplitudes. 
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Fig. 1. Block diagram of used formant features determination 
method. 

The indirect determination of the basic FF is realized 
using all three mentioned approaches to spectral envelope 
calculation and smoothing. In the case of the LPC envelope 
calculation the higher order is applied; in the case when the 
FF are calculated directly from the roots of the LPC poly-
nomial, the lower order is applied – see the block diagram 
in Fig. 1. Correctness of the basic FF values obtained by all 
three indirect methods as well as by direct calculation from 
the roots is assessed by two criteria: the resulting values of 
3-dB bandwidths must be less than 500 Hz [16], and the 



54 J. PRIBIL, A. PRIBILOVA, DETERMINATION OF FORMANT FEATURES … 

found values of the first three formant positions must fall 
within the corresponding frequency interval in dependence 
on the voice type (male/female). 

 
Fig. 2. Example of the FF determination from a long vowel 

“e” (female voice, F0 = 191 Hz, fs = 16 kHz): compari-
son of resulting smoothed spectral envelopes (upper), 
determination of formant tilts from LPC spectral en-
velope (lower); the complementary angles are calcu-
lated as  ` =    180. 

The complementary FF can be defined as formant 
tilts – angles between spectrum peaks in the place of the 
determined first three format positions (see documentary 
Fig. 2). The general bisector formula in the parametric 
form can be used for calculation 
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where k is a bisector direction, y1,2 represent values of PSD 
in [dB] of the determined formants, and x1,2 are positions of 
the formants on the frequency axis in [Hz]. When k < 0 the 
formants have declining trend, when k > 0 the formants 
have ascending trend. The resulting angle  in degrees is 
defined as  = (Arctg(k)/π)·180. 

2.3 Statistical Analysis and Comparison of 
Formant Feature Values 

Obtained basic and complementary FF values are 
processed separately in dependence on the voice type 
(male / female), and sorted by emotional styles. The whole 

process of statistical analysis of FF values consists of six 
steps: 

1. calculation of the basic statistics of the formant fre-
quencies and their 3-dB bandwidths, and formant tilt 
parameters (directions and angles), 

2. calculation and building of the histograms for F1,2,3 
frequencies, 

3. calculation of extended statistical parameters from 
histograms (kurtosis and skewness), 

4. calculation of the mean emotional-to-neutral F1, F2, 
F3 formant position ratios, 

5. evaluation of histograms by the ANOVA 
supplemented with multiple comparison of group 
means, 

6. numerical matching by the hypothesis test. 

Skewness is a measure of the asymmetry of the data 
around the sample mean. If the skewness is negative, the 
data are spread out more to the left of the mean than to the 
right. If the skewness is positive, the data are spread out 
more to the right. Kurtosis is a measure of how outlier-
prone a distribution is. The kurtosis of the normal distribu-
tion is 3. Distributions that are more outlier-prone than the 
normal distribution have kurtosis greater than 3; distribu-
tions that are less outlier-prone have kurtosis less than 3. 
We use these parameters together with other types of FF in 
the feature vector for GMM classification. 

3. Material and Experiments 
The main FF analysis was carried out on the speech 

corpus obtained from multi-medial CDs containing the 
Czech and Slovak stories performed by professional actors. 
At present, our database consists of sentences with duration 
from 0.5 to 5.5 seconds (resampled at 16 kHz), with differ-
ent contents expressed in four emotional styles: “neutral”, 
“joy”, “sadness”, and “anger” uttered by several speakers 
(134 sentences spoken by male voices and 132 sentences 
spoken by female voices, 8+8 speakers altogether). From 
the main speech signal database of sentences, the next one 
consisting of manually selected speech segments corre-
sponding to the stationary parts of the vowels “a”, “e”, “i”, 
“o”, “u”, and consonants “m” and “n” was consequently 
created for detailed analysis. Number of analyzed voiced 
frames was in total: 

a) Male: neutral - 5103, joy - 4927, sadness - 4642, 
anger - 4391. 

b) Female: neutral - 5223, joy - 4541, sadness - 4203, 
anger - 4349. 

The frame length for spectral analysis depends on the 
mean pitch period of the processed signal. In our experi-
ment, we had chosen 24-ms frames for the male voices, 
and 20-ms frames for the female voices. Calculation of the 
FF values was supplemented with determination of the 
fundamental frequency F0 by autocorrelation analysis 
method with experimentally chosen pitch ranges as fol-
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lows: 55÷250 Hz for the male voices, and 105÷350 Hz for 
the female ones. Then, the F0 values were compared and 
corrected by the results obtained using the PRAAT pro-
gram [17] with similar internal settings of F0 values. The 
obtained mean F0 values for all eight male and eight fe-
male speakers are shown in Tab. 1. 
 

Speaker / 
F0 [Hz] 

S1 S2 S3 S4 S5 S6 S7 S8 

Male 133 127 98 132 99 101 88 118 

Female 228 177  207 198 215 205 201 219 

Tab. 1. Speakers’ mean F0 values for male and female voices. 

At present, the developed GMM emotional speech 
classifier has only one-level structure as it can be seen in 
Fig. 3. This simple architecture expects that the gender of 
the voice (male/female) was correctly recognized in the 
previous process (manually, by listening tests, etc.) as 
a pre-processing phase that is usually used in speech recog-
nition systems [18], [19]. Subsequently, the emotional 
speech style is identified for each of two gender classes. In 
our first GMM emotional style classification test, we use 
the feature set consisting of 16 values as the input data 
vector for GMM training and classification containing the 
basic spectral parameters: skewness and kurtosis from the 
histograms of F1, F2 values, the formant tilts, the comple-
mentary spectral parameters (harmonic-to-noise ratio, 
spectral flatness, and entropy), and supra-segmental 
parameters (F0, jitter, and shimmer) – see Tab. 2. For this 
experiment the number of mixtures (Ngmix) for every emo-
tion model was set to four, and for control of the expecta-
tion-maximization algorithm training [18] the number of 
iteration steps (Niter) was set to 1000. 
 

No Feature name Feature type Value type 

1 F1h*) Basic Skewness 

2 F2h*) Basic Skewness 

3 F1h*) Basic Kurtosis 

4 F2h*) Basic Kurtosis 

5 F12 formant tilt Basic Rel. Min 

6 F12 formant tilt Basic Std 

7 Harmonic-to-noise ratio Complementary Mean 

8 Harmonic-to-noise ratio Complementary Std 

9 Spectral flatness Complementary Mean 

10 Spectral flatness Complementary Std 

11 Spectral entropy Complementary Mean 

12 Spectral entropy Complementary Std 

13 F0 Supra-segmental Median 

14 F0 DIFF Supra-segmental Rel. max 

15 Jitter Supra-segmental Rel. max 

16 Shimmer Supra-segmental Median 
*) Calculated from histogram 

Tab. 2. Used types of values in the feature vector set for GMM 
emotional speech style classifier. 

To obtain speaker independent GMM classification, 
the data k-fold cross-validation method [18] was applied 
during the training and the testing processes. For our ex-
tracted data from the Czech and Slovak database the 

groups of speakers were divided by the ratio of 7:1 (seven 
for training, one for testing/classification – both voices 
together). For practical implementation of the GMM model 
creation, data training, and classification the basic func-
tions from the Ian T. Nabney “Netlab” pattern analysis 
toolbox [20] were used. 
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Fig. 3. Block diagram of currently developed GMM emo-

tional speech style classifier for Czech and Slovak. 

4. Obtained Results 
Partial results of analysis of all voiced frames of the 

main speech corpus are presented in the form of the box-
plot graphs of basic statistical parameters of the F1,2,3 val-
ues determined from the neutral speech of the male and the 
female voices together with the bar graph of the F1,2,3 mean 
frequencies (see Fig. 4). The values of the first three for-
mant 3-dB bandwidths for both voices are presented in 
Fig. 5. Two diagrams of bisectors with directions given by 
formant tilts from the male and the female voices are 
shown in Fig. 6. Summary histograms of the first three 
formant frequencies for the male and female speech in 
different emotional styles are shown in Fig. 7 and 8. 

The graphs with visualization of the difference be-
tween group means calculated using ANOVA statistics for 
different speech styles and separately for the male and the 
female voice can be seen in Figs. 9-11. These graphs are 
supplemented with the merged tables containing the null 
hypothesis/probability results for 5% significance level of 
the Ansari-Bradley test (see Tab. 3 and 4). 

Results of extended statistical analysis of the FF val-
ues – skewness and kurtosis parameters determined from 
the histograms for male and female voice in neutral and 
emotional states are given in Tab. 5 and 6. Obtained results 
of the additional FF parameter analysis (mean values of the 
formant tilts) are presented in Tab. 7. Detailed results of 
the mean F1,2,3 frequencies of the selected voiced sounds in 
neutral speaking style are shown in the common Tab. 8 for 
male and female voices. The summary results – the FF 
value ratios between different emotional states and a neu-
tral state for male and female voice are given in Tab. 9. 

The first results of the experiment with the GMM 
emotional style classifier are presented in the form of the 
bar graph of the confusion matrix for both voices and four 
emotional speaking states – see Fig. 12. Tab. 10 summa-
rizes the achieved mean values of the GMM emotion 
recognition error rate in [%]. 
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Fig. 4. Partial results of basic statistical parameters of the 
F1,2,3 values for the male and female speech in a neutral 
style (upper), and bar graphs of mean values of the 
first three formant frequencies for different emotional 
states of male and female voices (lower). 

 
 
 
 
 
 
 
 
 
 

Fig. 5. Bar graphs of the 3-dB bandwidth mean values of the 
first three formant frequencies for different emotional 
states of male and female voices. 

 
 
 
 
 
 
 
 
 
 

Fig. 6. Summary diagrams of bisectors with directions given 
by formant tilts for different emotional states: 
male (left), and female (right) voices. 

 
 
 
 
 
 

a)  b) 
 
 
 
 
 
c) d) 

Fig. 7. Histograms of F1,2,3 values for different emotional 
states: neutral (a), joy (b), sadness (c), and anger (d) – 
male voices. 

 
 
 
 
 

a)  b) 
 
 
 
 
 

c) d) 

Fig. 8. Histograms of F1,2,3 values for different emotional 
states: neutral (a), joy (b), sadness (c), and anger (d) – 
female voices. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Visualization of multiple comparison of group means 
applied to ANOVA results of histograms of F1 posi-
tions for neutral and different emotional speech styles: 
male voice (left), female voice (right). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Visualization of multiple comparison of group means 
applied to ANOVA results of histograms of F2 posi-
tions for neutral and different emotional speech styles: 
male voice (left), female voice (right). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Visualization of multiple comparison of group means 
applied to ANOVA results of histograms of F3 posi-
tions for neutral and different emotional speech styles: 
male voice (left), female voice (right). 
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Fig. 12. Comparison of obtained GMM classification results in 
the form of the integrated confusion matrix for male 
and female voices; Ngmix = 4, Niter = 1000. 

 

Fx -Emotion h/p: joy h/p: sadness h/p: anger 

F1 - Neutral 1/2.35 10-7 1/3.44 10-15 1/2.52 10-25 

F1 - Joy 0/1 1/8.17 10-11 1/5.69 10-18 

F1 - Sadness  0/1 1/3.29 10-34 

F2 - Neutral 1/1.68 10-25 1/8.54 10-9 1/4.26 10-13 

F2 - Joy 0/1 1/2.17 10-16 1/1.86 10-11 

F2 - Sadness  0/1 1/5.33 10-3 

F3 - Neutral 1/2.63 10-18 1/6.45 10-3 1/4.27 10-12 

F3 - Joy 0/1 1/1.13 10-16 1/6.46 10-36 

F3 - Sadness  0/1 1/2.25 10-20 

Tab. 3. Merged hypothesis/probability values as results of the 
Ansari-Bradley hypothesis test of F1,2,3 positions – 
male voice. 

 

Fx -Emotion h/p: joy h/p: sadness h/p: anger 

F1 - Neutral 1/6.38 10-8 1/7.24 10-14 1/2.02 10-22 

F1 - Joy 0/1 1/2.17 10-12 1/3.28 10-6 

F1 - Sadness  0/1 1/4.52 10-32 

F2 - Neutral 1/3.83 10-11 1/3.72 10-9 1/5.15 10-28 

F2 - Joy 0/1 1/7.46 10-4 1/3.73 10-14 

F2 - Sadness  0/1 1/4.66 10-16 

F3 - Neutral 1/2.49 10-15 1/8.36 10-3 1/1.89 10-15 

F3 - Joy 0/1 1/5.35 10-28 0/4.52 

F3 - Sadness  0/1 1/3.28 10-16 

Tab. 4. Merged hypothesis/probability values as results of the 
Ansari-Bradley hypothesis test of F1,2,3 positions – 
female voice. 

 

Male voice Female Voice Emotion 
type F1 F2 F3 F1 F2 F3 

Neutral 0.405 0.166 0.074 0.379 0.085 -0.009 

Joy 0.451 0.374 0.429 0.426 0.305 0.326 

Sadness 0.181 -0.095 -0.065 -0.142 -0.163 -0.166 

Anger 0.528 0.532 0.453 0.472 0.530 0.466 

Tab. 5. Skewness parameters determined from the histograms 
of F1,2,3 frequencies for male and female voice in 
neutral and emotional states. 

 

Male voice Female Voice Emotion 
type F1 F2 F3 F1 F2 F3 

Neutral 1.5176 -0.741 3.269 2.477 -0.308 5.332 

Joy 0.349 1.878 0.706 0.493 2.248 0.427 

Sadness 1.938 -0.129 9.672 4.134 0.989 11.836 

Anger -0.381 2.828 5.257 -0.679 3.386 7.402 

Tab. 6. Kurtosis parameters determined from the histograms of 
F1,2,3 frequencies for male and female voice in neutral 
and emotional states. 

 

Male voice Female Voice Emotion 
type  ‘12 ‘23 ‘13 ‘12 ‘23 ‘13 

Neutral -41 -37 -44 -44 -54 -29 

Joy -29 -20 -34 -30 -23 -33 

Sadness -44 -49 -40 -52 -64 -19 

Anger -34  10 -47 -15 14 -25 

Tab. 7. Mean values of formant tilts; complementary angles in 
[deg]. 

 

Male / female Sound 
type NF [-] F1 [Hz] F2 [Hz] F3 [Hz] 

“a” 782 / 758 631 / 756 1363 / 1545 2529 / 2725 

“e” 802 / 720 451 / 521 1590 / 1754 2490 / 2744 

“i” 576 / 684 297 / 371 1479 / 1622 2415 / 2814 

“o” 618 / 608 514 / 541 1158 / 1371 2514 / 2606 

“u” 684 / 735 393 / 438 1113 / 1428 2531 / 2943 

“m” 696 / 784 259 / 314 1186 / 1557 2544 / 2653 

“n” 945 / 934 271 / 357 1211 / 1592 2557 / 2690 

Tab. 8. Detailed results of the mean F1,2,3 frequencies together 
with the number of processed frames; neutral speaking 
style, male and female voices. 

 

Formant 
ratio F1male F2male F3male F1female F2female F3female 

joyous: 
neutral 

0.712 1.025 1.038 0.898 1.082 1.049 

sadness: 
neutral 

1.043 0.813 0.899 1.353 0.948 0.938 

angry: 
neutral 

1.123 0.795 0.762 1.282 0.885 0.887 

Tab. 9. Mean emotional-to-neutral F1,2,3 formant position 
ratios. 

 

Error rate 
/emotion 

Neutral Joy Sadness Anger 

Male 21.948 8.571 9.948 34.432 

Female 9.094 29.272 4.827 25.769 

Total 15.521 18.921 7.387 30.105 

Tab. 10.  Summarized mean values of GMM emotion recogni-
tion error rate in [%] for the emotional speech style 
classifier. 
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5. Discussion 
Generally, it can be said that statistical distribution of 

the analyzed F1,2,3 frequencies for male speech is better for 
our purpose than that for female speech. Values obtained 
from the female voices have higher standard deviation 
(compare box-plot graphs of basic statistical parameters in 
Fig. 4) and the frequencies of the formants are approxi-
mately about 15 % higher than that of the male voices. 
Contrary to it, the values of the formant 3-dB bandwidths 
have no correlation with the type of speaking style or the 
type of the voice (see the bar graph in Fig. 5). On the other 
hand, comparison of the formant tilts shows good differen-
tiation between neutral and emotional styles (see graphs in 
Fig. 6) for both voices. The “anger” emotion has the great-
est ‘12 angle (the greatest ratio of PSD in [dB] at F1 and 
F2 frequencies) and the “sadness” emotion has the lowest 
‘12 angle for both voices. The complementary angles 
between PSD at frequencies F1 and F2 (‘12) and the com-
plementary angles between PSD at frequencies F1 and F3 
(‘13) have always negative values. The complementary 
angles between PSD at frequencies F2 and F3 (‘23) can 
have also positive values (the formants have ascending 
trend – see values in Tab. 7). Results of detailed analysis of 
seven voiced sounds represent differences between F1,2,3 
positions as it is documented in Tab. 8. However, in the 
case of the consonants “m” and “n” the differences of the 
F1,2,3 values are lower due to smaller absolute amplitudes 
of the speech signal than for the vowels and they cannot be 
compared with sufficient accuracy. 

Extended statistical parameters – skewness and kurto-
sis – subsequently calculated from histograms of F1,2,3 
frequencies also show correlation between the corre-
sponding types of emotions for both voices (compare val-
ues in Tab. 5-6). Values of these histograms were next 
evaluated by the ANOVA approach. From the analysis of 
difference between group means calculated using ANOVA 
statistics follows that there also exists some “similarity” 
between individual groups. It is mainly expressed for the 
emotion groups “sadness” and “anger” for the male voice, 
and “joy” and “sadness” for the female voice in the case of 
F2 positions, and the groups “neutral” and “sadness” for 
the female voice in the case of F3 positions  the groups 
“joy” and “anger” are even overlapping. 

The results of the first experiment with our GMM 
classifier show that this realization is applicable to emo-
tional style classification (see confusion matrix in Fig. 12). 
From the basic spectral parameters only statistical values of 
the first two formant frequencies F1 and F2 and spectral 
tilts were used (see Tab. 2) since the frequencies F3 have 
lower significance (differentiation) of the ANOVA statis-
tics results (see Fig. 11 and values in Tab. 3-4). The ob-
tained recognition error of the GMM classifier presented in 
Tab. 10 achieves acceptable values (the mean error rate for 
all four emotions and both voices is about 18 %). From the 
detailed results per emotions follows that recognition 

problems occur in the “anger” state of the male voice and 
in the “joy” state of the female voice. 

6. Conclusion 
The realized statistical comparison of the first three 

formant frequencies shows correlation of the results for the 
male and female voices inside the currently analyzed 
speech corpus, and significant differences between the data 
groups in the emotional and neutral styles. Therefore, these 
parameters can be used together with the values of the 
basic spectral properties and the prosodic parameters of 
speech in Czech and Slovak for creation of the database of 
values for the emotional speech classifier based on statisti-
cal approach that is currently being developed. 

Alternatively, the anticipated application is in the 
voice communication systems with the human-machine 
(computer) interface [21] where emotion recognition (cur-
rent emotional state of a user) helps to make communica-
tion more effective by selection of the suitable strategy of 
dialogue management. On the other hand, this speech ma-
terial with achieved statistical properties can be used in the 
Czech TTS systems working on the statistical approach 
(based on the HMM) for synthetic speech personification 
[22] or expressive speech production [23]. However, at 
first we plan to use this GMM classifier for objective 
evaluation of emotional speech synthesis as an option to 
manually performed listening tests. 

Our future aim will be to test the influence of the used 
values in the input feature vector and the initial parameter 
setting on creation and training of the GMM model, and 
further influence on the obtained emotion recognition 
score. It means to find out the best (optimal) feature set, the 
optimal number of used mixtures, and number of iterations 
for GMM emotion classification and voice recognition. In 
near future we would also like to supplement our Czech 
and Slovak speech database with another three emotions 
(boredom, surprise, etc.) and carry out extension of the 
GMM classifier for these emotional states. Considering the 
fact that our current database consists of speech only with 
acted emotional styles, the analysis of FF properties con-
sidering also speech material spoken under real emotions 
should be performed. Last but not least, we would like to 
use broader comparison with other databases in different 
languages (e.g. the German speech database Emo-DB [24], 
or international COST 2102 Italian Database of Emotional 
Speech [9]). 
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