
Access Control System Using Multi-factor Authentication

T. Cvrček1, and P. Dzurenda1

1Department of Telecommunications, Brno University of Technology, Brno, Czech Republic

E-mail: tadeas.cvrcek@vutbr.cz, dzurenda@vut.cz

Abstract—A secure user authentication process is a key prerequisite for ensuring the

security of the entire electronic system. On the other hand, current systems usually

deploy many constrained devices with limited computational power, memory space and

cryptographic support. This makes it hard to deploy secure cryptographic mechanisms

in this environment. In this article, we present our multifactor authentication system

using a reader with a secure module represented with MultOS smart card and an Android

smart phone acting as a user authentication device. The system supports NFC (Near

Field Communication) communication interface for intermediating communication between

smart phone and reader, supports additional authentication factors (e.g. PIN code or

fingerprint) and is easily implementable even on very constrained devices such as smart

cards.

Keywords—MultOS,Android, Authentication, SecureAccessModule,Multi-Factor, Access

Control, Cryptography, Security, Smart Card, Authenticated Key Agreement

1. INTRODUCTION

Nowadays, the environment of Internet of Things (IoT) is growing significantly and the Industry 4.0 one

is becoming more relevant. However, both environments require to be secure, to connect sensors and

gadgets to common network. Losing data or compromising the network would mean possibility of losing

assets, or even threat subjects themselves. On the other hand, authentication in the IoT environment is

limited by constrained devices. These devices have limited performance due to their size and power

consumption requirements. However, it is still necessary to provide authentication methods even in such

environment.

One of the best ways to authenticate an entity is to use Multi-Factor Authentication (MFA), which

is becoming important across the services we use especially nowadays. According to the directive

2015/2366, the European Union (EU) requires users to use MFA for money transactions with nominal

value of 50 Euros and above [1]. MFAdefines three factor types: knowledge (e.g., Personal Identification

Number (PIN) and password), possession (e.g., smart card, smart phone and wearables), and inherent

(e.g., behavioral and physical biometrics). According to the EU law, at least two of these types must be

used.

In this paper, we developed and implemented a multi-factor access control system based on

Authentication and Key Agreement (AKA) protocol published in [2]. Our implementation deploys a

hardware reader with a slot for Secure Access Module (SAM) and internal clock, and the Android smart

phone acting as a user authentication token. The proposed solution is secure, efficient, and easy to run

on IoT devices with different computational power.

2. MULTI-FACTOR ACCESS CONTROL SYSTEM

The implemented system deploys Google Android based smart phone with Near Field Communication

(NFC) support, SAMmodule in a form of smart card, and access terminal (i.e., single board computer or

microchip embedded in the door card reader). The terminal provides communication interface between

the SAM and smart phone. This terminal is connected to an electric door lock, that in case of successful

authentication allows the user to open the door and access protected area. For development purposes,

the Raspberry Pi 3 Model B+ has been used as the terminal. The communication protocol between

the terminal and SAM/smart phone has request-response communication model and uses Application

Protocol Data Units (APDU). The protocol is used for communication between a smart card and a smart

phone, because both have required software support and they can not communicate directly.

190DOI: 10.13164/eeict.2022.190

mailto:tadeas.cvrcek@vutbr.cz
mailto:dzurenda@vut.cz


The system uses SAM module. This module is integrated in the terminal and provides hardware

acceleration of cryptographic primitives and secure memory management. As SAM module, one can

use many available smart card platforms. In our case, we use MultOS smart card. The authentication

protocol is based on AKA protocol [2] and allows us to perform two factor authentication, namely: 1)

possession (i.e., smart phone) and knowledge (i.e., PIN code) or 2) possession (i.e., smart phone) and

biometric (i.e., fingerprint). The general architecture of our access control system and the principle how

the multi-factor authentication process works with smart phone is depicted in Figure 1.

Figure 1: Multi-factor authentication system using smart phone and embedded SAM module.

We refer to [2] for more details of AKA principles. We implemented applications for both Android

phone and SAM module. The Algorithm 1 shows the cryptographic core of the access terminal (i.e.,

MultOS smart card) whereas Algorithm 2 shows the cryptographic core of the user device (i.e., Android

phone).

Algorithm 1 AKA-SERVER-SIGNVERIFY(., B:( , ?:� )
1: A( ∈' Z∗@
2: C( ← 6A(

3: 4( ←H(., C( )
4: B( ← A( − 4( · B:B mod @
5: Send: ., f = (4( , B( )

C B AKA-CLIENT-PROOFVERIFY
6: Receive: c = (4� , B� )
7: C ′← 6B� · ?:4�

�

8: ^ ← C ′A(

9: g( ← 4�
?
= H(., C ′, ^)

10: return g( = 0/1, ^

Algorithm2 AKA-CLIENT-PROOFVERIFY(., f, ?:( , B:� )
1: C ′

(
← 6B( · ?:4(

(

2: g� ← 4(
?
= H(., C ′

(
)

3: if g� = 0 then exit
4: A� ∈' Z∗@
5: C ← 6A�

6: ^ ← C
′A�
(

7: 4� ←H(., C, ^)
8: B%�# ←H(%�# )
9: B� ← A� − 4� · (B:� + B%�# ) mod @
10: return g� = 0/1, c = (4� , B� ), ^

Both algorithms need to performmodular and elliptic-curve operations, hash functions to authenticate

communicating entities and establish common secret for future encryption of communication channel.

In our implementation, we used secp256k1 elliptic curve, SHA-1 hash and 3DES-ECB cipher algorithms.

In user application, one have to provide valid PIN code to be successfully authenticated. During

authentication process a symmetric key is established. The key is used to encrypt user token sent from

smart phone. The token contains time information, that can be used by terminal to clarify if the user has

enough permissions and has been successfully authenticated by using another factor.

Testing terminal application for Raspberry Pi uses pcsc-lite external library, that makes it possible

to create communication channel between any devices communicating via APDU messages. Since the

Android Development Kit (ADK) tool does not provide any public elliptic-curve function calls, we used

micro-ecc library to compute elliptic-curve operations. To do so, we implemented the core functions on

smart phone in C++ using Android Native Development Kit (NDK). NDK allows us to archive much

better performance results during cryptographic core execution comparing with Java libraries.

3. IMPLEMENTATIONS ASPECTS

Smart cards differ in processor performances, memory capacities and cryptographic support. The AKA

protocol needs to use a secure hash function, a cipher algorithm, and perform operations over

191



elliptic-curve such as scalar point multiplication and point additions, as shown in Algorithm 1 and 2.

However, different smart cards have different cryptographic support, and therefore, we have to select

the most satisfying one, see [3] for more details. For example, JavaCard platform can offer smart

card development environment based on Java programming language. These cards support wide range

of secure cryptographic algorithms, however, they miss the support of modular arithmetic operations.

BasicCard platform is based onBasic programming language. This platform offers a variety of algorithms,

but is very limited in performance. MultOS platform can be programmed using C or Assembly language.

All functions are provided by integrated framework. These cards show the best performance results and

are considered very secure. In fact, they are used also in bank systems. Smart cards platform based on

.NET framework called .NET Cards do not provide needed features, such as elliptic-curve operations. A

detailed overview of cryptographic support across different smart card platforms is presented in Table I.

Table I: Smart card cryptographic support.

JavaCard BasicCard MultOS .NET Card

3DES Yes Yes Yes Yes

AES Yes Yes Yes Yes

DSA Yes No No No

SHA-1 Yes Yes Yes Yes

SHA-2 Yes Yes Yes Yes

SHA-3 Yes No No No

MOD1 No Yes Yes No

ECOP2 No Yes Yes No

Note: 1Modular arithmetics,2Elliptic-curve operations

In order to make our system more flexible, we optimized the APDU communication model. In

particular, we use APDU encapsulation technique, which allows generating and inserting

APDU command messages for the receiver to the APDU response message of the sender. Thanks to

these techniques, the terminal does not need to know the communication protocol, it just simply forwards

APDU messages between these two devices. The terminal starts with SELECT command message sent

to the SAM module (i.e, smart card). This message is only for selecting the applet we want to use. Then

the terminal waits for the smart phone to be attached. After that, SELECT command is transmitted to

the smart phone, which responds with a data payload containing the APDU message and status code.

The message in the data payload is then directly sent to the SAM by the terminal and the status code is

removed. The SAM can also put a message to the data payload and send it back according to the status

code. This communication method works indefinitely unless a specified status code is detected by the

terminal. The status code represents the result of the authentication process.

4. EXPERIMENTAL RESULTS

The implemented experimental Android application contains of user interface, as one can see on the left

side in Figure 2. A user can register to the application, reset any existing registration and turn on the

authentication mode. The user registration requests the PIN code from the user. Then, the PIN code

is required from the user to turn on the authentication mode. The mode is running for 30 s. If the user

decides to clear all data, it is possible to trigger the reset process through the reset button. As an alternative

to the PIN code, the user can use a fingerprint as a second authentication factor. This does not impact the

cryptographic core of the authentication protocol. The difference is that the user is not required to insert

the PIN code during the authentication phase. Note that the PIN code is stored in the application and is

protected with the fingerprint of the user.

The development environment uses Raspberry Pi as common interface. The service for APDU

transactions has its own output. If the application runs in debug mode, the log is printed to the terminal.

The log of successful authentication of the user is depicted on the right side of Figure 2. The SAM

module in the terminal determines the authentication result. If the authentication is successful, the SAM

returns status code 0x9001, otherwise it returns 0x9002. The authentication result message carries

192



Figure 2: Smart phone application screen (left side) and log of successful authentication (right side).

an information with timestamp. The timestamp comes from smart phone and is encrypted using the

symmetric key fromAKAprotocol. It serves to decide if the system can allow the user to enter a protected

area in specific time period. Our benchmarks show how time consuming the implemented protocol is.

The used smart card for verification part of the protocol is ML4-G17 model with MultOS version 4.2.1

and for user side we consider Huawei Nova 3 smart phone. The smart phone runs Kirin 970 processor

clocked at 2.4 GHz with four ARM Cortex A73 cores and four ARM Cortex A53 cores. The protocol

requires almost 2.6 s on SAM module and only 0.2 s on smart phone.

5. CONCLUSION

In this paper, we present our access control system using multi-factor authentication protocol, hardware

terminal with embedded SAMmodule and clock, and Android smart phone application for users to prove

their identities. The implementation is secure, not too computationally demanding and ready to run

on IoT devices. In order to make the system more dynamic, flexible and extend usability of APDU

communication model across various devices, we extended it with encapsulation method that makes

possible to forward APDUmessages between SAM and user’s device without intervention from terminal.

In the future, we are about to extend the system with addition peripheral devices, that user would be able

to use as another authentication factor. Such device could be for example a smartwatch.

ACKNOWLEDGMENT

This research has been supported by the grant VJ01010084 of the Ministry of the Interior of the Czech

Republic, ”Digital evidence in criminal proceedings” in programme Impakt 1 (2022-2025).

REFERENCES

[1] European Parliament, Council of the European Union, ”Directive (EU) 2015/2366 of the European

Parliament and of the Council of 25 November 2015 on payment services in the internal

market, amending Directives 2002/65/EC, 2009/110/EC and 2013/36/EU and Regulation (EU)

No 1093/2010, and repealingDirective 2007/64/EC”, 2015, https://eur-lex.europa.eu/legal-content/

EN/ALL/?uri=celex:32015L2366.

[2] P. Dzrenda, S. Ricci, R. C. Marqués, J. Hajný, P. Číka, ”Secret sharing-based authenticated key

agreement protocol”, The 16th International Conference on Availability, Reliability and Security,

2021, doi:10.1145/3465481.3470057.

[3] L. Malina, P. Dzurenda, J. Hajný, Z. Martinásek, ”Assessment of Cryptography Support

and Security on Programmable Smart Cards”, The 41st International Conference on

Telecommunications and Signal Processing (TSP), 2018, https://ieeexplore.ieee.org/document/

8441334.

193

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32015L2366
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32015L2366
https://dl.acm.org/doi/abs/10.1145/3465481.3470057
https://ieeexplore.ieee.org/document/8441334
https://ieeexplore.ieee.org/document/8441334

