

 Semi-supervised deep learning approach to
break common CAPTCHAs

BOŠTÍK, O.; HORÁK, K.; KRATOCHVÍLA, L.; ZEMČÍK, T.; BILÍK, Š.

Neural Computing and Applications
2021, vol. 33, iss. 20, Pages 13333-13343

ISSN 0941-0643

DOI: http://dx.doi.org/10.1007/s00521-021-05957-0

Accepted manuscript

This is a post-peer-review, pre-copyedit version of an article published in Neural Computing and
Applications. The final authenticated version is available online at:
http://dx.doi.org/10.1007/s00521-021-05957-0

dspace.vutbr.cz

http://dx.doi.org/10.1007/s00521-021-05957-0
http://dx.doi.org/10.1007/s00521-021-05957-0

Neural Computing and Applications manuscript No.
(will be inserted by the editor)

Semi-supervised deep learning approach to break common CAPTCHAs

Ondrej Bostik · Karel Horak · Lukas Kratochvila · Tomas Zemcik · Simon Bilik

Received: date / Accepted: date

Abstract Manual data annotation is a time consuming activ-
ity. A novel strategy for automatic training of the CAPTCHA
breaking system with no manual dataset creation is presented
in this paper. We demonstrate the feasibility of the attack
against a text-based CAPTCHA scheme utilizing similar net-
work infrastructure used for Denial of Service attacks. The
main goal of our research is to present a possible vulnerabil-
ity in CAPTCHA systems when combining the brute-force
attack with transfer learning. The classification step utilizes a
simple convolutional neural network with 15 layers. Training
stage uses automatically prepared dataset created without
any human intervention and transfer learning for fine-tuning
the deep neural network classifier. The designed system for
breaking text-based CAPTCHAs achieved 80% classification
accuracy after 6 fine-tuning steps for a 5 digit text-based
CAPTCHA system. The results presented in this paper sug-
gest, that even the simple attack with a large number of
attacking computers can be an effective alternative to current
CAPTCHA breaking systems.

Keywords CAPTCHA · Semi-supervised learning ·
Convolutional Neural Networks

1 Introduction

The expansion of web services in recent decades created
a demand for an automated system that can automatically
interact and process data contained within these systems.
Substituting humans with computer programs in monotonous
interaction with web services can be beneficial for both sides.

O. Bostik
Faculty of Electrical Engineering and Communication
Brno University of Technology
Technicka 12
Brno 61200
Czech Republic E-mail: bostik@feec.vutbr.cz

Automated services, as described in [8], can make a profit on
stock markets, send unsolicited advertisement, and respond
to a new condition in a matter of moment without any human
interaction.

Sometimes this exploit of public resources can be harm-
ful. This situation leads to the creation of an automatic system
to differentiate the human user from a machine. The resulting
test was called CAPTCHA (Completely Automated Public
Turing test to tell Computers and Humans Apart) in [1]. It is
defined as a general task that must be very easy for humans
to solve, but it must be enormously difficult to create an au-
tonomous system to solve the task both for the computing
resources and for the algorithm complexity.

During the last two decades, a constant struggle of im-
provements between system providers and users introduce
various forms of CAPTCHAs in almost every shape possible.
And for every shape sooner or later an automated CAPTCHA
breaking solution was created (see [4,13,14]). A lot of effort
from both sides was invested in gaining an advantage over
the other side driven by the opportunity to earn money .

No other field was as affected by this kind of evolution
and so synonymous with CAPTCHA as the field of OCR (Op-
tical Character Recognition). Text-based CAPTCHA systems
were one of the first widely spread forms of CAPTCHA. Cur-
rent OCR algorithms can be very robust, but they have some
weaknesses. This imperfection limits the usage of these al-
gorithms but it can be utilized for CAPTCHA purposes with
great advantage. The server sends an image with a sequence
of characters to the client-side. This image is prepared in a
way that uses known OCR issues against the artificial solver
(computer). At the same time, as the CAPTCHA become
more and more robust, people who try to algorithmically
solve this kind of CAPTCHA challenge help to improve the
OCR algorithm, as for example in [20].

This kind an iterative process helps both sides, but devel-
opment advanced so far, that current CAPTCHA schemes are

2 Ondrej Bostik et al.

very complex for humans and the computers have a signifi-
cantly higher success rate than humans. Automated versatile
systems for cracking CAPTCHA can beat many schemes
without any kind of human interaction. Some of these sys-
tems can be tweaked to learn new unknown CAPTCHA chal-
lenge. As previous research in [5,18] has shown, this kind
of system can overcome almost any possible CAPTCHA
scheme with a high success rate.

In some situations, authors even admit their systems can
be overcome by automated solvers. Their goal is to discour-
age most of the generic attacks while maintaining user ex-
perience and solving accuracy for humans. In the end, every
CAPTCHA systems must be easily solvable for humans by
design, as presented in [10].

In this paper, we want to present a new way to over-
come CAPTCHA systems. Until now, every CAPTCHA solv-
ing system focuses on single computer attacks utilizing one
strong solver. This kind of attack can be easily blocked from
the service provider by blocking the individual IP address or
range of IP addresses. Nevertheless, the attackers can easily
hijack a huge amount of computers and distribute the attack
over a vast number of computers worldwide. Even a very sim-
ple attack based on classifier trained without a huge dataset
can be successful (success rate over 1% as presented in [9]).
And with every successfully classified CAPTCHA, attackers
can automatically expand the training set and augment the
classifier accuracy. Even more, the attacker can train multi-
ple classifiers and make them compete between instances to
make the most accurate prediction or even better, use these
classifiers combined in the style of the AdaBoost method
(see [15]).

Having this in mind, we would like to present a new
way to train the CAPTCHA solvers with none or at least
minimal human interaction. Our goal is not to break any
CAPTCHA service in particular, but we would like to under-
stand and describe the process to further improve the security
of CAPTCHA services.

2 Related work

The main CAPTCHA security features of all prominent
websites rely mostly on anti-segmentation techniques like
negative-kerning, occluding lines, character overlapping, and
variable length. All these security measures are in place be-
cause the standard approach to overcome CAPTCHA for
the two decades is to first segment the image into individual
regions per assumed character. The following step commonly
utilized machine learning to classify the segmented regions
as an individual character. This approach is called segment-
then-recognize (see [24,12,27]) and can also be used for
audio CAPTCHA as presented in [7,6].

The reason for this can be found in [11], where authors
demonstrated that machines outperform humans in the task

of single character recognition. This work set the base ground
for the assumption, that the difficulty of CAPTCHA recog-
nition lies mainly in anti-segmentation techniques and was
improved in [9].

Most of the works discussing CAPTCHA solving around
the year 2015 are using ad-hoc methods fine-tuned to a par-
ticular CAPTCHA scheme. One example can be seen in [29],
where the presented approach achieved 82% on reCAPTCHA
version 2011 and 95.5% on reCAPTCHA version 2012. This
high success rate is due to the precisely tuned algorithm cus-
tom fit on these kinds of CAPTCHAs and this approach must
be extensively modified to other CAPTCHA schemes of this
class.

Similarly, in [32] authors used a simple method utilizing
pixel counting combined with some heuristics to overcome
CAPTCHAs provided by Captchaservice.org. In [17] authors
presented CAPTCHA solving method dealing with hollow
CAPTCHAs with a success rate from 36% to 89% on five hol-
low CAPTCHA schemes, but this approach was not effective
with non-hollow CAPTCHA schemes. Two-layer CAPTCHA
provided by Microsoft was also overcome in [16] by the cus-
tom made attack which relies on splitting the CAPTCHA
into two separate layers and solving them independently.

The next stage in the evolution of CAPTCHA solving
methods uses toolbox design. One instance of this is De-
captcha in [9], which was used by its creators to overcome 13
out of 15 schemes with success rates between 5%-66%. The
presented Decaptcha system consists of five general steps that
can be individually hand-tuned to a particular CAPTCHA
scheme.

In the last years, generic methods are considered as the
state of the art CAPTCHA solving techniques. These meth-
ods aim to create end-to-end enclosed solution, which can
be operated without any previous fine-tuning on attacked
CAPTCHA scheme.

In [5] authors proposed a cutting method which slices
each CAPTCHA image in all possible ways and scores all
possible combination. The most probable answer is then
chosen. Despite the interesting title, authors must utilize
many optimizations to lower the computational complexity
as the computation cost increases exponentially with the
length of CAPTCHA. This results in a lower success rate
raging from 5% to 55%. However, the presented attack is the
first method not strictly utilizing the segment-than-recognize
approach.

In [18] authors presented CAPTCHA solver based on
dissecting every CAPTCHA image into a great number of
sub-segments. These partial segments are then combined with
adjacent sub-segments and recognized. Recognition rate can
be up to 77% on some CAPTCHA schemes. However, this
method failed when dealing with a complicated background
or a large amount of noise.

Semi-supervised deep learning approach to break common CAPTCHAs 3

Most recent attacks use convolutional neural networks
(CNN) in combination with other techniques. For example in
[36] authors utilized CNNs for feature extraction and Long
Short-Term Memory (LSTM) for actual recognition. Another
similar work was presented in [30], where two deep networks
were used, one estimating the length of the text, the other
using this information to get the supposed correct answer.
The disadvantage in both works is the need to build a large
annotated dataset for initial system learning.

This disadvantage is almost bypassed by the system
in [34]. The system uses a small annotated sample (about
500pcs per CAPTCHA scheme) to learn the generator of syn-
thetic CAPTCHA codes of the same style. The generator is
based on a Generative adversarial network (GAN). The gen-
erated data is then used to train the basic version of CNN and
the original data is used to fine-tune the network. Creating
GAN to create large dataset needed for training CAPTCHA
solver is a very time consuming task. Training such a network
increases the computational complexity and the presented
network heavily relied on the noise removal stage. GAN
structure described in [35] partially deals with noise removal
by introducing GAN-based Background Denoiser.

The method described in [31] overcomes some of these
issues by transfer learning. First, the base solver is trained
on synthetic CAPTCHA images generated without any noise.
Then 500 CAPTCHA images of the targeted CAPTCHA
scheme is used for fine tuning the base solver. The paper
presented, that before the fine tuning, the average success
rate on CAPTCHAs is close to 0%, but after fine tuning on
500 CAPTCHAS, the success rates increases to 50%-97%
for latin alphabet based CAPTCHA schemes. The presented
CNN is an end-to-end solution and is based on ResNet with
RNN attention mechanism.

The main disadvantage of the last two papers is the re-
quirement of the 500 annotated image samples of targeted
CAPTCHA scheme. With the average of around 4 CAPTCHA
images annotated per minute, the required time is 2 hour of
intensive human labor.

The goal of this paper is therefore to introduce a new
approach that will require no or absolutely minimal involve-
ment of a person to annotate the training data. Every study
discussed in previous paragraphs needed some annotated data
as an input. We want to prove, that this part of all previous
research papers in this field is obsolete and CAPTCHA break-
ing system can be trained without any human interaction.

3 Proposed CAPTCHA breaking system

In this paper, we want to simulate a hypothetical CAPTCHA
breaking attack. Assume that an attacker has a large group
of controlled computers (either on site or hacked comput-
ers) to create large bot network. The large number of in-
volved machines is needed, because every attack on common

Fig. 1: Proposed CAPTCHA breaking system

CAPTCHA system can be easilly discovered [3,2] and the
attacker can be blocked. With the usage of large bot network,
a large number of breaking attempts can be done in short
time without any chance of detection. The potential attacker
also has a central unit at his disposal for a suitable classifier
training and management of controlled computers.

The central unit can order its clients to automatically
download the CAPTCHA image, use the supplied classifier to
acquire predicted answers, and send it back to the web-page.
Attacked web-service cannot distinguish the machine from
a human without evaluating the sent answer. The attacked
web-page will respond and either stops on the current page
or continues to the next page. The attacking unit will obtain
results in binary yes (and the image with its label is saved)
or no (and the image is discarded). Correctly labeled images
are then sent to the central unit to fine-tune the classifier.

At first, the model used with all clients is very general
and does not have much success. But with each translated
CAPTCHA, the central unit has more and more training data
to adjust the model accordingly. The central unit then dis-
tributes a fine-tuned model to all its clients further improving
the data collection success rate.

The above-explained hypothetical system is presented in
diagram in Fig. 1.

In these times, huge Denial of Service (DoS) attacks are
widely used from time to time. Presented attack on web-
service implementing text-based CAPTCHA as a security
measure is very similar in its nature to DoS attack and can
utilize the same infrastructure.

4 Ondrej Bostik et al.

3.1 Comparison with the previous work

Obtaining a sufficiently large annotated dataset for training
CAPTCHA breakers is currently the main problem of all pub-
lished methods. Hundreds of samples are needed for success-
ful training of standard machine learning-based classifiers [5,
18], and tens of thousands of annotated samples are needed
for CNN-based classifiers [28,36]. For the rapid deployment
of CAPTCHA breakers on new CAPTCHA system, novel
methods are published and each presents an optimal way to
reduce the required amount of human labor to a minimum.

Of the several methods published in recent years, it is
necessary to highlight the method published in [34]. The
GAN-based system generates CAPTCHA challenges similar
to the original ones. First, a generic generator is created that
is fine-tuned based on 500 images to match the target system.
The data generated from this system are then used to train a
suitable classifier.

Another interesting way is the use of transfer-learning
as in [31]. The general solver is trained on the model of the
general CAPTCHA system, then the transfer-learning is used
and the presented CAPTCHA breaking system is fine-tuned
on 500 real samples so the CAPTCHA breaking system can
break the targeted CAPTCHA system with a high accuracy.

We observe, that the common denominator of a large
number of methods from recent years is the number of 500
samples of the targeted CAPTCHA system annotated by
a human. So far, no method has decreased the number of
required manually hand-annotated CAPTCHA images below
this limit. The goal of our efforts in this paper is to break
this boundary, to use a targeted CAPTCHA system against
itself so that it is not necessary to manually annotate a single
image.

In Table 1, we compare the number of annotated CAPTCHA
samples needed to create a successful classifier for several
methods published in recent years with our proposed ap-
proach.

4 Experimental setup

The proposed attack on CAPTCHA systems is programmati-
cally simple but requires extensive computational resources
and usage of those illegal activities is not even allowed on the
academic ground. Without the use of the bot network system
presented in Fig. 1, we are not able to directly implement the
proposed attack and thus obtain a sufficiently large number of
annotated CAPTCHA images to successfully verify the func-
tionality of the system. Our entire workplace is on a uniform
range of IP addresses, which the real CAPTCHA system
would detect and immediately permanently block whole IP
range. Therefore in this paper, we only simulate proposed
attack on CAPTCHA system from the machine-learning per-
spective. The goal is to train a simple deep learning classifiers

Fig. 2: Experiment overview

(see [19]) sufficient enough to prove the concept. Our cur-
rent goal presented in this paper is not to create versatile
CAPTCHA breaking system like in [30,34,36].

The system used in this article is described in Fig. 2.
Every input image is preprocessed and segmented into a
number of regions. Every individual region is then fed into a
classification neural network. To simulate the response from
the targeted server, we compare outputs from all segments
(e.g. the assumed character) to the correct answer per sin-
gle CAPTCHA image. If only one segment (one character)
is misclassified, the whole CAPTCHA image is marked as
misclassified and the image is discarded in this phase. Only
the segments from the images with completely correct an-
swers are used for further fine-tuning. The whole processing
pipeline is described bellow in more detail.

The entire experiment was implemented in MATLAB
computational environment using mainly Deep Learning
Toolbox and Computer Vision Toolbox.

4.1 Input dataset

Dataset of CAPTCHA images used in this article was set
up by python library ”Lepture/Captcha” for generating text-
based and audio-based CAPTCHA challenges. The source
code of this library is available via GitHub from [33].

The main parameters for dataset generation were the
length of CAPTCHA text and the character set. We generate
CAPTCHA challenges with 5, 7, or 10 characters per image.
As for the character set, we want to compare text-based
CAPTCHA with:

– numbers 0-9
– lowercase alphabet a-z
– non confusable numbers and letters (0-9, a-z except 0, 1,

9, g, l and o)

In this experiment, we used all nine combinations of these
features to generate nine individual groups of data. Each

Semi-supervised deep learning approach to break common CAPTCHAs 5

Table 1: Selected CAPTCHA breaking studies

Year Author Focus Number of annotated samples for training

2021 Presented approach Simple segmentation, CNN classifier 0 manually labeled CAPTCHAs
2021 Zhang et al. [35] GAN-based de-noising + CNN based recognition 500 manually labeled CAPTCHAs
2020 Wang et al. [31] ResNet+RNN attention mechanism, transfer learning 500 manually labeled CAPTCHAs
2020 Noury and Rezaei [28] End-to-end CNN, fixed size CAPTCHA 50.000 sythetic CAPTCHAs from [33]
2020 Zi et al. [36] End-to-end CNN and LSTM 200,000 manually labeled CAPTCHAs
2018 Ye et al. [34] GAN-based generator + CNN based solver 500 manually labeled CAPTCHAs
2016 Gao et al. [18] Component creating, graph building, k-NN 500 manually labeled CAPTCHAs
2014 Bursztein et al. [5] Custom segmentation with k-NN scorer and ensemble arbiter 1.000 manually labeled CAPTCHAs

Fig. 3: Sample CAPTCHA images (correct answers: 5uywa,
mcvj4, hyp7yby and n2k25mc)

group consists of 50 000 individual text-based CAPTCHA
challenges. Sample CAPTCHA images from this dataset are
displayed in Fig. 3. The size of all CAPTCHA images is
180x90px.

4.2 Segmentation stage

We chose only basic segmentation techniques for this experi-
ment. The aim of this paper is not to repeat the segmentation
experiments presented in section 2 (for example [9,5,29,30]),
but to demonstrate how to train the classification part with-
out manually creating any dataset. The segmentation method
used in this paper can be replaced by one of these methods
to increase the success rate.

Every input image in our case is therefore only binarized
by the Otsu method. Subsequently, morphological operations
are used to remove noise. Small regions are then also ex-
cluded from further processing. If there is an overlap of char-
acters, such overlap is detected and non-compliant regions
are divided. This process is illustrated in Fig. 4.

4.3 Recognition stage

The main idea of this paper is to use transfer learning to
train the CAPTCHA character classifier without any manual
dataset creation. This is achieved by generating a small train-
ing dataset of single synthetic characters. This dataset con-
tains images of various fonts, sizes and with various distor-
tions. During the fine-tuning stages, the classification model

(a) Original image

(b) Binarized image

(c) Morphological operations applied

(d) Selection of significantly connected components

(e) Division of connected characters

Fig. 4: Segmentation process overview

for character recognition is slightly changed with the new
training data and thus adapting more and more to the target-
ted CAPTCHA scheme. The training process is illustrated in
Fig. 2.

We describe the learning algorithm only for text-based
CAPTCHAs with digits, the rest of the experiments was
performed similarly but with a greater number of characters.

The classification network was firstly pre-trained on 500
synthetic images (50 per class) containing one distorted letter
per image. From these 500 images, 75% was used for training,
25% for validation. This general training dataset in real attack
can be augmented by a small sample of targetted characters
(or from any similar CAPTCHA) to speed up the learning
stage. The training used the Stochastic Gradient Descent
with Momentum algorithm introduced by [25]. The training
process was run for 10 epochs with an initial learning rate set

6 Ondrej Bostik et al.

Table 2: Convolutional deep neural network used for classifi-
cation

Layer type Layer description

1 Image Input 28x28x1 images
2 Convolution 8pcs 3x3x1 convolutions
3 Batch Normalization 8 channels
4 ReLU -
5 Max Pooling 2x2 max pooling
6 Convolution 16pcs 3x3x8 convolutions
7 Batch Normalization 16 channels
8 ReLU -
9 Max Pooling 2x2 max pooling
10 Convolution 32pcs 3x3x16 convolutions
11 Batch Normalization 32 channels
12 ReLU -
13 Fully Connected 10 outputs
14 Soft-maximum -
15 Classification Output Cross Entropy Function for

10 Mutually Exclusive Classes

to 0.01. The exact topology of the convolutional deep neural
network used in this experiment is shown in Table 2.

This weak classifier was then used to classify all images
from the previously described dataset. To simulate the server
response, only when all segments from tested CAPTCHA
image are classified correctly, the answer is registered and
the CAPTCHA image is stored.

After the whole dataset is processed, the stored CAPTCHA
images are segmented again with the same segmentation algo-
rithm and the new training dataset is created. The fine-tuning
step utilized the same parameters as the first training stages,
but only for 5 epochs.

5 Experimental results

All experiments were computed on a desktop computer with
AMD FX-6350 with 6 core processor and 3.9 GHz frequency,
24GB RAM and GeForce GT 630 graphics card.

5.1 Segmentation stage results

The above-described approach is applicable to the simple text
CAPTCHA used in this experiment. Sample output from this
stage is depicted in Fig. 5. The described segmentation tech-
nique is successful in 22%-80% depending on CAPTCHA
length (see Table 3).

The presented segmentation stage is also suitable to some
other schemes that do not intentionally use character overlap,
but rather the characters are randomly distributed around the
image and resulting overlaps are small. For example about
half of the text-based CAPTCHA schemes attacked in [9]
and one-third of CAPTCHA schemes attacked in [36] can be
successfully preprocessed in this way.

Fig. 5: Sample output from segmentation stage (characters a,
A, C, d, H, k, M, P, Y and 5)

Table 3: Segmentation stage results per feature combination

CAPTCHA text length
5 7 10

Numbers 0-9 80.02% 59.47% 21.88%
Lowercase alphabet a-z 68.23% 50.79% 22.34%
Non-confusable lowercase charac-
ters and letters

71.11% 52.54% 22.29%

-2 -1 0 1 2 3 4 5 6

Input

-10

-5

0

5

10

O
u

tp
u

t

RELU

SELU

SPOCU

Fig. 6: Graph comparison of activation functions RELU,
SELU and SPOCU

On the other hand, the presented segmentation stage is
not versatile enough to broad usage and is the most serious
drawback of the presented experiment.

5.2 Network optimization

The important parts of the network are activation functions.
Their main function is to increase the network ability. In
this manner we tried to upgrade the network performance
with two different activation functions Scaled Exponential
Linear Unit (SELU) [23] and Scaled Polynomial Constant
Unit (SPOCU) [22]. The interesting ability of these activation
functions is to create a self normalizing network. In the Fig.
6 is shown the comparison of these activation functions with
the Rectifier Linear Unit (RELU) [26].

The experimental setup was as follows. We create an
updated architecture with SPOCU activation function instead
of RELU activation function, the rest of the network remains

Semi-supervised deep learning approach to break common CAPTCHAs 7

1 2 3 4 5 6

Fine-tuning step

0%

20%

40%

60%

80%

100%

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

RELU

SELU

SPOCU

Fig. 7: Classification accuracy per fine-tuning step for 5 char-
acter length CAPTCHA with different activation functions

the same as in the table 2. For the performance we transform
the inputs as in [22] into interval [−βγ,(1−β)γ] by eq.

xnorm = γ
x−min(x)

max(x)−min(x)
−βγ. (1)

The SPOCU parameters [22,21] which we tried are α =

3.0937, β = 0.6653, γ = 4.437 and c = ∞. For the SELU
activation function we also replace the RELU activation func-
tion with SELU activation function. The parameters used for
SELU were α = 1.67326 and γ = 1.0507. Both activation
functions were built with the MATLAB custom layer.

From the Fig. 7 can be concluded that RELU activation
function surmount the SPOCU activation function and re-
sults are comparable to the SELU activation function. The
MATLAB implementation is optimized and thus faster than
custom user implementation. From the time comparison on
the validation dataset the RELU is 50% faster than SELU and
70% faster than SPOCU. Therefore we use RELU in the rest
of experiments. However, it should be noted that the strength
of the SPOCU auto-normalization layer would be manifested
when used in a different network architecture, which makes
this comparison impossible.

5.3 Different training strategies for classification stage

In this paper, we compare three different strategies to train the
classification network. The comparison of all these strategies
is depicted in Fig. 8. The proposed strategy is described in
following section.

The first training strategy is to create an individual dataset
for every fine-tuning step. We call this strategy ”learning
from scratch”. In every fine-tuning step, we train a fresh new
classifier from the data acquired with the last classifier. This
strategy works with some limitations for short CAPTCHA
schemes with small character sets (for example digits-only
CAPTCHA). The main drawback of this approach is in the

1 2 3 4 5 6

Fine-tuning step

0%

20%

40%

60%

80%

100%

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

Learning from scratch

Fine tuning

Boosted fine tuning

Fig. 8: Comparison of classification accuracy per fine-tuning
step for different training strategies (text-based CAPTCHA
with length of 5 digits)

swift shift from the original character features in every fine-
tuning step. This results in misclassified characters in later
stages, that have been correctly recognized in the first steps.

The second strategy is to fine-tune the classifier instead
of training a fully new classifier with every new data from
targeted CAPTCHA system. The training dataset is created
from all correctly classified CAPTCHA at every stage while
omitting the pre-train data. This approach has the main poten-
tial for CAPTCHA schemes with a small character set. For
the recognition of a bigger character set like all lowercase
letters, this approach has a tendency to omit some characters
which significantly reduce the accuracy and learning speed
of this method.

5.4 Proposed approach

The proposed approach is based on previous learning strat-
egy. The main difference is that we added data from the
pre-training step to every class. In this way, we guarantee
that the classifier does not forget some characters. During
the first fine-tuning steps some characters were recognized
but were not added to the training data because one or more
characters from evaluated CAPTCHA image was not been
recognized. As the classification of this previously unrecog-
nized character is growing, the probability of adding more
characters to training classes increases as well.

The proposed semi-supervised approach can be success-
fully used to break text-based CAPTCHA of different length,
but the length of CAPTCHA significantly slow down the
training process. After approximately 4 fine-tuning stages we
can observe an almost exponential reduction in the training
accuracy with the length of the CAPTCHA. This is illus-
trated in Fig. 9. It is important to highlight, that the accuracy
for CAPTCHA schemes with a length of 7 and 10 is still

8 Ondrej Bostik et al.

1 2 3 4 5 6

Fine-tuning step

0%

20%

40%

60%

80%

100%

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

Length 5

Length 7

Length 10

Fig. 9: Classification accuracy per fine-tuning step for digits
CAPTCHA

1 2 3 4 5 6

Fine-tuning step

0%

20%

40%

60%

80%

100%

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

Numbers

Letters

Non-confusable characters

Fig. 10: Classification accuracy per fine-tuning step for 5
character length CAPTCHA with different character set

increasing significantly even in fine-tuning step 6 when our
evaluation finished.

As for the different character set used for training, the
classification accuracy is significantly lower when using
longer character set (see Fig. 10). After 6 fine-tuning steps,
the classification accuracy for letters is almost 2,5 times lower
than in the case of digits, which is almost the same ratio as
in the case of characters length. The classification accuracy
for the non-confusable letters and digits is slightly higher
because the characters are easier to recognize than in the case
of some letters.

All results are summarized in Table 4. In all cases, the
accuracy is greater than previously mentioned 1% threshold
and therefore we can state, that the CAPTCHA scheme used
in this experiment is broken.

The quantification of the improvement in classification
between the pre-trained classifier and the fine-tuned classifier
is shown in Fig. 11. The value in the figure is defined as the
ratio between the number of correctly classified CAPTCHAs
after the first and sixth learning steps. There is an exponential

Table 4: Classification accuracy after 6 fine-tuning steps

CAPTCHA text length
5 7 10

Numbers 0-9 94.78% 78.84% 26.16%
Lowercase alphabet a-z 32.89% 20.39% 1.13%
Non-confusable lowercase char-
acters and letters

38.54% 19.86% 2.54%

5 7 10

CAPTCHA length

0

5

10

15

20

25

30

D
at

as
et

 a
m

p
li

fi
ca

ti
o

n

Numbers

Letters

Non-confusable characters

Fig. 11: Amplification of training dataset between first and
last fine-tuning steps

increase with the increase of CAPTCHA text length. This
is caused by the fact that in the first steps there is a greater
probability of error in at least one character and thus there is
the slow down in the fine-tuning process.

5.5 Character accuracy

Our simulation has an advantage in knowledge of the solution
for every CAPTCHA in the dataset. Although we cannot use
this advantage in the simulation (because we would deny the
meaning of the experiment), we can use this information for
the evaluation of the classification accuracy per single char-
acter. Fig. 12 clearly illustrates that single character accuracy
is significantly higher in the first fine-tuning steps. In later
learning steps, the differences decrease and the CAPTCHA
recognition system as a whole reaches the limit at the level
of accuracy of individual character recognition.

6 Conclusion

In this paper, we have presented a novel strategy for auto-
matic training of text-based CAPTCHA without previous
dataset creation. We have demonstrated, that the CAPTCHA
system can be broken via transfer learning. The proposed
attack would utilize similar network infrastructure as the
infrastructure used for Denial of Service attacks.

Semi-supervised deep learning approach to break common CAPTCHAs 9

1 2 3 4 5 6

Fine-tuning step

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

Character accuracy

CAPTCHA accuracy

Fig. 12: Classification accuracy for 5 digits numerical
CAPTCHA

The simulation of this attack was in particular successful
on shorter 5-character CAPTCHAs with only digits. The clas-
sification accuracy on this CAPTCHA scheme was 94.78%
after 6 fine-tuning steps with 50000 attacks per step. With the
length of CAPTCHA text and with the complex character set,
the classification accuracy decrease rapidly, but the accuracy
for all tested combinations was greater than 1%.

The main disadvantage of the presented approach is in the
segmentation process, which is fine-tuned for this particular
dataset.

Our future goal is to combine our training approach with
the previous work in this field of research to create a general
end-to-end solution that requires no training data.

The obtained results confirm that the proposed CAPTCHA
breaking technique is feasible and the security measures must
be ready on this kind of attack.

Acknowledgements The completion of this paper was made possible
by the grant No. FEKT-S-20-6205 - ”Research in Automation, Cybernet-
ics and Artificial Intelligence within Industry 4.0” financially supported
by the Internal science fund of Brno University of Technology.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA:
Using Hard AI Problems for Security. In: Lecture Notes in Com-
puter Science, pp. 294–311. Springer, Berlin, Heidelberg (2003).
DOI 10.1007/3-540-39200-9 18. URL http://link.springer.

com/10.1007/3-540-39200-9{_}18

2. Arai, T., Okabe, Y., Matsumoto, Y.: Precursory Analysis of Attack-
Log Time Series by Machine Learning for Detecting Bots in
CAPTCHA. In: 2021 International Conference on Information Net-
working (ICOIN), pp. 295–300 (2021). DOI 10.1109/ICOIN50884.
2021.9333881

3. Arai, T., Okabe, Y., Matsumoto, Y., Kawamura, K.: Detection of
Bots in CAPTCHA as a Cloud Service Utilizing Machine Learn-
ing. In: 2020 International Conference on Information Networking
(ICOIN), pp. 584–589 (2020). DOI 10.1109/ICOIN48656.2020.
9016522

4. Athanasopoulos, E., Antonatos, S.: Enhanced CAPTCHAs : Using
Animation to Tell Humans and Computers Apart. Ifip Interna-
tional Federation For Information Processing 4237, 97–108 (2006).
DOI 10.1007/11909033 9. URL http://link.springer.com/

chapter/10.1007/11909033{_}9

5. Bursztein, E., Aigrain, J., Moscicki, A., Mitchell, J.C.: The End is
Nigh: Generic Solving of Text-based CAPTCHAs (2014). URL
http://portal.acm.org/citation.cfm?id=2671296

6. Bursztein, E., Beauxis, R., Paskov, H., Perito, D., Fabry, C.,
Mitchell, J.: The failure of noise-based non-continuous audio
captchas. In: Proceedings - IEEE Symposium on Security and
Privacy, pp. 19–31 (2011). DOI 10.1109/SP.2011.14

7. Bursztein, E., Bethard, S.: Decaptcha: breaking 75% of eBay audio
CAPTCHAs. Proceedings of the 3rd USENIX conference on
Offensive technologies 1(8), 1–7 (2009)

8. Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.:
How good are humans at solving CAPTCHAs? A large scale eval-
uation. In: Proceedings - IEEE Symposium on Security and Pri-
vacy, pp. 399–413. IEEE (2010). DOI 10.1109/SP.2010.31. URL
http://ieeexplore.ieee.org/document/5504799/

9. Bursztein, E., Martin, M., Mitchell, J.C.: Text-based CAPTCHA
strengths and weaknesses. In: Proceedings of the ACM Conference
on Computer and Communications Security, pp. 125–138 (2011).
DOI 10.1145/2046707.2046724

10. Bursztein, E., Moscicki, A., Fabry, C., Bethard, S., Mitchell,
J.C., Jurafasky, D.: Easy Does It: More Usable CAPTCHAs.
In: CHI ’14 Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 2637–2646. 1600 Amphithe-
atre Pkwy (2014). URL https://www.elie.net/publication/

easy-does-it-more-usable-captchas

11. Chellapilla, K., Larson, K., Simard, P., Czerwinski, M.: Computers
beat humans at single character recognition in reading based human
interaction proofs (HIPs). In: 2nd Conference on Email and Anti-
Spam, pp. 1–8. Conference on Email and Anti-Spam, CEAS (2005)

12. Chellapilla, K., Simard, P.: Using Machine Learning to Break Vi-
sual Human Interaction Proofs (HIPs). In: L. Saul, Y. Weiss,
L. Bottou (eds.) Advances in Neural Information Process-
ing Systems, vol. 17, pp. 265–272. MIT Press, Vancouver
(2005). URL https://proceedings.neurips.cc/paper/2004/

file/283085d30e10513624c8cece7993f4de-Paper.pdf

13. Chow, Y.W., Susilo, W.: AniCAP: An Animated 3D CAPTCHA
Scheme Based on Motion Parallax. In: D. Lin, G. Tsudik, X. Wang
(eds.) Cryptology and Network Security: 10th International Con-
ference, CANS 2011, Sanya, China, December 10-12, 2011. Pro-
ceedings, pp. 255–271. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2011). DOI 10.1007/978-3-642-25513-7 18. URL http:

//link.springer.com/10.1007/978-3-642-25513-7{_}18

14. Desai, A., Patadia, P.: Drag and Drop: A Better Approach to
CAPTCHA. In: 2009 Annual IEEE India Conference, pp. 1–4
(2009). DOI 10.1109/INDCON.2009.5409359

15. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting. Journal of Com-
puter and System Sciences 55(1), 119–139 (1997). DOI https://doi.
org/10.1006/jcss.1997.1504. URL http://www.sciencedirect.

com/science/article/pii/S002200009791504X

16. Gao, H., Tang, M., Liu, Y., Zhang, P., Liu, X.: Research on the
Security of Microsoft’s Two-Layer Captcha. IEEE Transactions
on Information Forensics and Security 12(7), 1671–1685 (2017).
DOI 10.1109/TIFS.2017.2682704

17. Gao, H., Wang, W., Qi, J., Wang, X., Liu, X., Yan, J.: The robust-
ness of hollow CAPTCHAs. In: Proceedings of the ACM Confer-

10 Ondrej Bostik et al.

ence on Computer and Communications Security, pp. 1075–1086
(2013). DOI 10.1145/2508859.2516732

18. Gao, H., Yan, J., Cao, F., Zhang, Z., Lei, L., Tang, M., Zhang,
P., Zhou, X., Wang, X., Li, J.: A Simple Generic Attack on Text
Captchas. In: Network and Distributed System Security Sympo-
sium (NDSS 2016), pp. 1–26 (2016). DOI 10.14722/ndss.2016.
23154

19. Horak, K., Sablatnig, R.: Deep learning concepts and datasets
for image recognition: overview 2019. In: Eleventh International
Conference on Digital Image Processing (ICDIP 2019), 11179, pp.
484–491. SPIE (2019). DOI 10.1117/12.2539806. URL https:

//doi.org/10.1117/12.2539806

20. Kaur, K., Behal, S.: Designing a Secure Text-based CAPTCHA. In:
Procedia Computer Science, vol. 57, pp. 122–125. Elsevier (2015).
DOI 10.1016/j.procs.2015.07.381

21. Kiseľák, J., Lu, Y., Švihra, J., Szépe, P., Stehlı́k, M.: Correc-
tion to: “SPOCU”: scaled polynomial constant unit activation
function. Neural Computing and Applications (2020). DOI 10.
1007/s00521-020-05412-6. URL https://doi.org/10.1007/

s00521-020-05412-6

22. Kisel’ák, J., Lu, Y., Švihra, J., Szépe, P., Stehl\’\ik, M.: “SPOCU”:
scaled polynomial constant unit activation function. Neural Com-
puting and Applications pp. 1–17 (2020)

23. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-
Normalizing Neural Networks. In: I. Guyon, U.V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Gar-
nett (eds.) Advances in Neural Information Processing Systems
30 (NIPS 2017), vol. 30, pp. 971–980. Curran Associates, Inc.
(2017). URL https://proceedings.neurips.cc/paper/2017/

file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf

24. Mori, G., Malik, J.: Recognizing objects in adversarial clutter:
breaking a visual CAPTCHA. 2003 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2003. Pro-
ceedings. 1, I–I (2003)

25. Murphy, K.P.: Machine Learning: A Probabilistic Perspective, 1.
edition edn. The MIT Press, Cambridge, MA (2012)

26. Nair, V., Hinton, G.: Rectified Linear Units Improve Restricted
Boltzmann Machines Vinod Nair. In: Proceedings of ICML, vol. 27,
pp. 807–814 (2010)

27. Nguyen, V.D., Chow, Y.W., Susilo, W.: A CAPTCHA scheme based
on the identification of character locations. In: X. Huang, J. Zhou
(eds.) Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 8434 LNCS, pp. 60–74. Springer International
Publishing, Cham (2014). DOI 10.1007/978-3-319-06320-1 6.
URL https://doi.org/10.1007/978-3-319-06320-1{_}6

28. Noury, Z., Rezaei, M.: Deep-CAPTCHA: a deep learning based
CAPTCHA solver for vulnerability assessment (2020). URL http:

//arxiv.org/abs/2006.08296

29. Starostenko, O., Cruz-Perez, C., Uceda-Ponga, F., Alarcon-Aquino,
V.: Breaking text-based CAPTCHAs with variable word and
character orientation. Pattern Recognition 48(4) (2015). DOI
10.1016/j.patcog.2014.09.006

30. Tang, M., Gao, H., Zhang, Y., Liu, Y., Zhang, P., Wang, P.: Research
on Deep Learning Techniques in Breaking Text-Based Captchas
and Designing Image-Based Captcha. IEEE Transactions on Infor-
mation Forensics and Security 13(10), 2522–2537 (2018). DOI
10.1109/TIFS.2018.2821096. URL https://ieeexplore.ieee.

org/document/8327894/

31. Wang, P., Gao, H., Shi, Z., Yuan, Z., Hu, J.: Simple and Easy:
Transfer Learning-Based Attacks to Text CAPTCHA. IEEE Access
8, 59044–59058 (2020). DOI 10.1109/ACCESS.2020.2982945

32. Yan, J., Ahmad, A.S.E.: Breaking Visual CAPTCHAs with Naive
Pattern Recognition Algorithms. In: Twenty-Third Annual Com-
puter Security Applications Conference (ACSAC 2007), pp. 279–
297 (2008). DOI 10.1109/acsac.2007.4412996

33. Yang, H.: GitHub - lepture/captcha: A CAPTCHA library that
generates audio and image CAPTCHAs. (2020). URL https:

//github.com/lepture/captcha/

34. Ye, G., Tang, Z., Fang, D., Zhu, Z., Feng, Y., Xu, P., Chen, X., Wang,
Z.: Yet Another Text Captcha Solver: A Generative Adversarial
Network Based Approach. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’18, pp. 332–348. Association for Computing Machinery, New
York, NY, USA (2018). DOI 10.1145/3243734.3243754. URL
https://doi.org/10.1145/3243734.3243754

35. Zhang, N., Ebrahimi, M., Li, W., Chen, H.: A Generative Adver-
sarial Learning Framework for Breaking Text-Based CAPTCHA
in the Dark Web. In: 2020 IEEE International Conference on
Intelligence and Security Informatics (ISI), pp. 1–6 (2020). DOI
10.1109/ISI49825.2020.9280537

36. Zi, Y., Gao, H., Cheng, Z., Liu, Y.: An End-to-End Attack on Text
CAPTCHAs. IEEE Transactions on Information Forensics and
Security 15, 753–766 (2020). DOI 10.1109/TIFS.2019.2928622

	05957.pdf
	main_article.pdf

