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Periodic version of the minimax distance criterion for Monte Carlo integration

Jan Eliáša,∗, Miroslav Vořechovskýa, Václav Sad́ıleka

aInstitute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Czech Republic

Abstract

The selection of points for numerical integration of the Monte Carlo type, largely used in analysis of engineering
problems, is developed. It is achieved by modification of the metric in the minimax optimality criterion. The
standard minimax criterion ensures the design exhibits good space-filling property and therefore reduces the
variance of the estimator of the integral. We, however, show that the points are not selected with the same
probability over the space of sampling probabilities: some regions are over- or under-sampled when designs
are generated repetitively. This violation of statistical uniformity may lead to systematically biased integral
estimators.

We propose that periodic metric be considered for calculation of the minimax distance. Such periodic
minimax criterion provides statistically uniform designs leading to unbiased integration results and also low
estimator variance due to retained space-filling property. These conclusions are demonstrated by examples
integrating analytical functions.

The designs are constructed by two different algorithms: (i) a new time-stepping algorithm resembling
a damped system of attracted particles developed here, and (ii) the heuristic swapping of coordinates. The
designs constructed by the time-stepping algorithm are attached to the paper as a supplementary material. The
computer code for construction of the designs is attached too.

Keywords: numerical integration, design of experiments, space-filling designs, Latin Hypercube Sampling,
Voronöı tessellation, periodic space

1. Introduction

Many engineering applications are inevitably accompanied by random nature of input variables. The random-
ness, arising from environment, material structure, construction process, maintenance or many other sources,
needs to be properly taken into account. The resulting output of the engineering analysis is a random function
and we are interested in questions which can be subsumed under the analysis of reliability, uncertainty and
sensitivity. Answers to these questions are obtained by numerical integration in high dimensional parameter
spaces. Such task is extremely time consuming and often becomes a bottleneck of the analysis.

We focus on this numerical integration of functions of random vectors. Let us assume a real-valued function
g(X) of a random vector X = (X1, X2, . . . , Xs) of s elements (we assume the function is integrable and
repeatable). This function can represent simple analytical formula that provides stress in elastic bent beam,
a complex numerical finite element solution of a large bridge under severe condition, performance of a system
or any other engineering problem. The statistical characteristics of the output are defined via s-dimensional
integration

E[S[g(X)]] =

∞∫
−∞

· · ·
∞∫
−∞

S[g(x)]fX(x) dx1 . . . dxs (1)

where fX is the joint probability density function of the input random vector and the statistical characteristic
of interest is determined by function S[·]. The mean value is obtained by taking S[g(X)] = g(X), polynomials
of g(X) yield higher statistical moments provided the integrals exist. The integration is typically evaluated
numerically as the weighted summation of integrand values at n discrete points. To decrease extreme compu-
tational demands, one can employ some type of surrogate model [3] or adaptive technique [23, 41]. We limit
ourselves to the basic case where integration points are generated a-priori and their weights are equal to 1/n
(the points are supposedly selected uniformly with respect to fX), the numerical integration can be written
using the following point estimator (average)

E[S[g(X)]] ≈ 1

n

n∑
i=1

S
[
g
(
F−1X (ui)

)]
(2)
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with FX being the joint cumulative distribution function of vector X, and ui representing realizations of s
independent variables with a uniform distribution spanning interval the from 0 to 1. The realizations of the
original input vector xi are obtained in Eq. (2) with the help of the inverse transformation xi = F−1X (ui).
Therefore, the realizations ui are drawn from a unit hypercube U = [0, 1]s representing the probability space.
Other types of design domains are also sometimes required [11], but these are not exploited here. The selection
of integration points ui (called design points here) can be performed deterministically (via various forms of grids
or quasi Monte Carlo sequences) or with some degree of randomness. In the latter case, which is explored in this
paper, the result of Eq. (2) is a random variable. Its mean value should coincide with the exact solution, i.e.,
Eq. (2) should provide an unbiased estimator of Eq. (1). Simultaneously, the variance of the estimator should
be as low as possible. These characteristics are dictated to a large extent by process in which the realizations of
ui are generated. The famous Koksma-Hlawka inequality [22, 29] postulates an upper limit for the integration
error as a multiplication of the discrepancy between the set of design points ui (called a design D hereinafter)
and a term dependent solely on the integrated function.

If we have a-priori knowledge about the function, we may optimize the location of points based on that
knowledge [41]. However, we focus here on a situation in which the model-free (“universal”) design is created.
In such a case, the Koksma-Hlawka [22, 17] inequality motivates us to use points that have low discrepancy
– this property is referred to as sample uniformity. The research area known as design of experiments offers
several criteria that should provide such designs based on a particular measure of discrepancy [29, 10, 40].

There is a group of point sets in the literature known as quasi Monte Carlo (QMC) sequences [14, 31, 29, 15,
45]. These sequences are designed to achieve fast decrease of discrepancy with an increasing number of points
in the domain. QMC sequences are generally assumed to be the most efficient tool for numerical integration
of smooth functions [44, 21, 8]. Similarly, the so-called low-dispersion sequences [30, 32] play a similar role in
QMC methods for global optimization.

Another group of design criteria delivering designs with high sample uniformity measure space-filling prop-
erty [1, 47, 46]. This group comprises several distance-based criteria among which the most famous are maximin
and minimax [19], Audze-Eglajs [1] and φp (known as phi criterion) [28]. For an overview of the design of ex-
periments please see, e.g., the recent review paper [12].

Designs optimized with respect to discrepancy or space-filling criteria indeed exhibit reduced estimator
variability. However, this is not a sufficient condition for unbiased Monte Carlo integration. Eq. (2) is derived
from the assumption that every possible domain point has the same probability of being included in the design.
This statistical uniformity is usually violated in standard space-filling criteria, as has been shown by authors for
Audze-Eglajs in [9] and for maximin and φp criteria in [49]. Vořechovský and Eliáš [49] also show the statistical
non-uniformity of the widely used centered L2 discrepancy [16] and recently proposed support points [24].

A simple remedy which is and easy to implement was also proposed in [9, 49] for distance-based criteria
to ensure their statistical uniformity via the usage of periodic space. The same idea is expanded here for the
minimax criterion and conceptually for its relaxed version.

Besides designs from U, we will also consider Latin hypercube (LH) designs [6, 27] in the unit hypercube, i.e.,
the location of points will be limited to the finite set L ∈ U, L =

{
(i− 1/2) /n

}s
for i ∈ {1, 2, . . . , n}, and

each coordinate value must be used exactly once for each dimension. The fundamental concepts of this paper
can be applied to LH designs from the finite set L as well as to designs from the infinite set U, but LH designs
are particularly attractive because they are non-collapsing and also represent each input variable in an optimal
manner.

2. The standard minimax criterion φmM

Let us consider a design D with n points ui. The minimax optimal design, DmM, minimizes the maximum
distance from an arbitrary point u ∈ U to the nearest design point ui [19]. To find such a design, one needs to
search for D = (u1, u2, . . . , un) so that the minimax measure φmM is minimized

φmM(D) = max
u∈U

[
min

i=1...n
d (u,ui)

]
(3)

A more appropriate name for the criterion would therefore be the minimaximin criterion, as noted by Pronzato
and Müller [35]. The function d can be an arbitrary metric; typically Minkowski distance is used

dr(ui,uj) =

(
s∑

v=1

[∆v(ui,uj)]
r

)1/r

(4a)

where ∆v(ui,uj) = |uiv − ujv| and r ≥ 1 (4b)

with r = 1 (Manhattan distance), r = 2 (Euclidean distance) or r = ∞ (Chebyshev distance) [47]. Only
Euclidean distance is considered further in this paper, as the application of other powers in Minkowski distance

2



Figure 1: Optimal designs with respect to the minimax criterion (top row, designs taken from https://spacefillingdesigns.nl) and
the proposed periodic minimax criterion (bottom row) for s = 2 and n =7, 10 and 13. The red circles with centers at the design
points have a radius equal to the φmM(D) or φmM(D) value of that particular design and demonstrate the design’s quality – the
whole domain must be covered by the circles but overlapping should be minimized.

is straightforward. Euclidean distance is isotropic, i.e., the distance between two points does not depend on the
orientation of the coordinate axes. However, its usage in a higher dimensional hypercube is problematic due to
the concentration of distances [39].

The search for DmM is also known as the facility location problem or the set covering location problem [43].
It has a number of practical applications such as the creation of an ozone monitoring network [37]. The seminal
paper by Johnson et al. [19] showed that the minimax design is G-optimal for certain correlation structures,
i.e., it minimizes the maximum Kriging variance. It is therefore often used to find designs optimal for the
construction of emulators.

Eq. (3) can be relaxed analogously to the way the maximin criterion was relaxed to formulate the φp criterion.
The relaxation replaces strict requirement of Eq. (3) to minimize only the maximum distance to minimization
of an integral of distances raised to some power over the whole domain. A family of new criteria is produced
by the relaxation [37]

φmM[p,q](D) =

∫
U

[
n∑

i=1

d(u,ui)
−q

]−p/q
dU


1/p

(5)

with p, q > 0. The minimax criterion is recovered for p, q →∞.
Examples of minimax optimal LH designs in two dimensions with Euclidean distance for n = 7, 10 and 13

are shown in the top row of Fig. 1. These designs were taken from the database https://spacefillingdesigns.nl
[47]. The sample uniformity (or space-filling property) guaranteed by the design criterion is achieved. However,
it will be shown below that the sample uniformity is not maintained and therefore these designs result in biased
integration.

3. The periodic minimax criterion φmM

Inspired by our work on the Audze-Eglajs, maximin and φp criteria [9, 49], we propose a periodic version of
the minimax criterion. We start with a periodic Euclidean metric d

d(ui,uj) =

√√√√ s∑
v=1

[
∆v(ui,uj)

]2
(6a)

where

∆v(ui,uj) = min {∆v(ui,uj), 1−∆v(ui,uj)} (6b)

The periodic metric measures distance in the periodic space defined by the unit hypercube U. It considers all
the periodic images of points at coordinates u + k, with k being a vector of arbitrary integers (Z) of size s,
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Figure 2: Visualization of periodic Voronöı tessellation on a unit square and its folding into a torus, n =50.

but only the shortest distance among all the images is taken into account. This type of periodic space is often
referred to as the minimum image convention. Plugging the periodic metric into the definition of the minimax
distance criterion from Eq. (3) provides its periodic version

φmM(D) = max
u∈U

[
min

i=1...n
d (u,ui)

]
(7)

which is called the periodic minimax criterion hereinafter. Examples of periodic minimax optimal LH designs
are shown in the bottom row of Fig. 1, including the nearest periodic images of all the design points. One can
see that the space-filling property (sample uniformity) of the design is preserved.

To prove that the statistical uniformity is ensured, imagine an arbitrary shift of the whole design D by
a vector l of arbitrary real numbers (without a loss of generality limited to interval 〈0, 1〉) of size s. Whenever
a point leaves the hypercube, it enters it again from the opposite side due to the periodicity. Thus the individual
coordinates of the new points will be either uv + lv or uv + lv − 1. For all possible variants, the quantity ∆
from Eq. (6b) is always preserved for every dimension, implying that the periodic distance between any two
points is preserved as well. Therefore, φmM(D) is invariant with respect to an arbitrary shift. When a design
is φmM optimal, so are all its shifted versions, and all of them have the same probability of being found in the
optimization process (assuming the optimization process itself is unbiased). Therefore, all the locations share
the same probability of being selected and the design is statistically uniform.

If the metric imposed by Eq. (6) were used in the relaxed version of the minimax criterion from Eq. (5)
then the periodic relaxed version would be obtained. It would only be approximative, since only the shortest
distances are considered – not all periodic images. The error would be greater for low powers q, for which the
ignored distances to other periodic images of ui contribute significantly. In any case, the periodic minimax
distance from Eq. (7) is exact, since only the shortest distances contribute.

4. Evaluation of φmM and φmM

The evaluation of the minimax criterion (Eq. 3) is relatively computationally expensive. If one has a design
D with design points ui, one needs to solve the maximization problem by finding the location u∗ ∈ U with the
largest distance from the design points. In the literature one can find three approaches which can be used to
determine the location of u∗:

� Typically, the problem is approximated by limiting the candidates for u∗ to a finite set of points chosen
artificially (usually a regular grid). This is the most common method that allows φmM(D) to be estimated
in reasonable time. However, to keep the error of such an estimate low, the grid needs to be dense and the
number of candidate points in the grid grows fast with dimension s. The modification of this method for
periodic space is easy: one can use the same grid and the same evaluation method; it suffices to replace
the metric d with the periodic version d̄.

� Another option for the evaluation of φmM(D) is via what is known as Markov chain Monte Carlo op-
timization. It is a sequential construction of points placed randomly but at a decreasing distance from
design points ui. As the distance decreases, the φmM value is estimated with diminishing error. The
algorithm is thoroughly described in [13]. Pronzato [34] shows that this method is the most effective for
higher dimensions (tested up to s = 5) as the computational time increases linearly with s. The periodic
version is again straightforward; as before, it suffices to change the metric to d̄.

� The last method uses Delaunay triangulation and/or Voronöı tessellation. These dual methods essentially
directly identify candidates for u∗. In the case of Delaunay triangulation, the φmM(D) is the radius of the
largest hypersphere that is circumscribed to Delaunay simplices, while in the case of Voronöı tessellation,
the φmM(D) is the maximum distance of the Voronöı vertex to the design points ui. This method yields
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Figure 3: Clipped and periodic Voronöı tessellations for s = 2 and n =16.

exact results as the set of candidates for u∗ determined by the tessellation or triangulation contains the true
solution. Unfortunately, the computational complexity of Delaunay triangulation and Voronöı tessellation
becomes prohibitive for higher dimensions. In addition, the Voronöı tessellation can be constructed only
approximately, as is effectively done in [26]. However, the method then becomes essentially the same as
the first method on this list.

One also needs to properly analyze the boundary region of the tessellation/triangulation. Both the Delau-
nay triangulation and Voronöı tessellation approaches do not provide candidates for u∗ at the boundary of
the hypercube, so they must be found by additional geometrical calculations [7]. As the boundary region
occupies more volume for high s, such additional calculations may take a significant time. One can easily
get rid of the problems with boundaries by extending n points by their symmetric images with respect
to all hypercube boundaries [35], i.e., by calculating triangulation on n(2s + 1) points. Even if not all n
symmetric images are considered, the computational complexity still grows fast with s.

The modification for the periodic minimax distance is in this case more elaborative since the boundaries
must be treated in a completely different, periodic way. One can imagine it as computing Voronöı tes-
sellation or Delaunay triangulation in a folded space (anuloid), see Fig. 2 or Fig. 3. The next section
elucidates the developed algorithm for such a construction.

Since the third method is the only exact one, we decided to employ it for the evaluation of both the
minimax (φmM) and the periodic minimax (φmM) criteria. The Voronöı tessellation with auxiliary points placed
symmetrically (mirrored) with respect to all the boundaries (needed for the calculation of φmM) is often called
clipped in the computational geometry literature [54]. There are also papers computing the periodic Voronöı
tessellation needed for the calculation of φmM. However, these algorithms are usually focused on centroidal
Voronöı tessellation in s = 2 or s = 3 dimensions and complex, often nonconvex regions as the application is
the generation of meshes [53, 38, 42]. In our case, we would like to compute clipped and periodic tessellation in
higher dimensions, but our region is a simple convex hypercube. For that reason, we have developed our own
algorithm employing Q-hull code [2].

4.1. Incrementally constructed clipped Voronöı diagram

The clipped version starts by placing auxiliary outside points symmetrically with respect to all the bound-
aries. One can mirror all the n inner points to make sure the correct solution will be obtained. However the
calculation of the tessellation is then performed with n+2sn points, which can be unnecessarily time consuming.
We therefore mirror only the N0 points that are closest to each mirroring plane. The solution is then computed
on n + 2sN0 points only, which can be much faster, though it may happen that the result is not fully correct.
The incorrect solution is enriched by the subsequent mirroring of additional points in a loop until the correct
solution is found.

The correctness of the solution and additional auxiliary points are determined via Delaunay simplices. All
the simplices that connect inner (original) and outer (auxiliary) points are selected. It is required that each
inner point of such a simplex is symmetrically placed with respect to all the boundaries crossed by that simplex.
If such a point is missing, it is added in the next step. If no auxiliary point is missing, we have the correct
clipped Voronöı tessellation. An example of this procedure is shown in Fig. 4 left with n = 16 points and s = 2
dimensions. The gray color marks all the simplices that cross boundaries but do not have all of their inner
points mirrored. Four new auxiliary points are identified and the triangulation/tessellation is updated. The
tessellation in the second step is already the correct solution.

Based on trial–error analyses, the reasonable N0 was estimated as N0 = 3n`char, where the characteristic
length `char = n−1/s represents the shortest distance in the regular orthogonal grid [39]. The procedure usually
terminates in the second step, but sometimes more steps are needed. Though Q-hull software allows the
incremental extension of sets of points and the updating of the solution, it has been found to be much quicker
to delete the previous solution and compute the new one from scratch.
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Figure 4: Incremental construction of clipped and periodic Voronöı tessellations and Delaunay triangulation for s = 2 and n =16.
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Figure 5: Performance of the incremental construction of clipped and periodic Voronöı tessellations using N0 = 1 and 3n`char
initially reflected or periodically repeated points. The four graphs on the left report the computational time of the incremental
solution, ti, divided by the computational time of the full solution, tf , measured when all the inner points are reflected or periodically
repeated in all necessary directions. The right-hand graph shows real time tf for s = 2 and 5. The Voronöı constructions for each
case were repeated 50 times with different locations of design points. Solid lines with circular markers show averages based on those
50 repetitions, while shaded bands show averages ± standard deviations.

4.2. Incrementally constructed periodic Voronöı diagram

For periodic tessellation, the mirroring is replaced by periodic repetition of the N0 points that are closest
to the boundaries. Unfortunately, one also needs to add auxiliary periodic images of points in the “corner
regions”, i.e., in all regions where two or more coordinates are above 1 or below 0. This is ignored in the first
step, however, and the first Voronöı tessellation is found for n (inner) plus 2sN0 (outer) points.

The solution must again be checked for correctness. Whenever any simplex crosses a boundary hyperplane,
it is required that all its inner points be periodically repeated with respect to the crossed boundaries. Otherwise,
the missing points are added in the next step. The situation is shown in Fig. 4 right, where some (not all) of
these simplices are colored in gray. Simplices b and c simply cross one boundary, and thus must be periodically
repeated with respect to this boundary. Simplices a, d and e require periodic repetition with respect to two
boundaries. In the third step we find the correct solution.

Once again, the algorithm seems to work well for N0 = 3n`char, and the fastest Q-hull implementation
compute a completely new solution in every step. Usually more than two steps are needed.

A comparison of approximate computation times for the incremental algorithm (ti) and full solution (tf) in
several dimensions is shown in Fig. 5. The full solution assumes the mirroring or periodic repetition of all the
points directly (a total of n(2s + 1) points for the clipped and n3s points for the periodic tessellation). The
results show that the full solution is only faster for extremely low n.
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Figure 6: Illustration of the analogies between distance-based criteria and a system of particles. a) Mm step. b) mM step. c)
Decision between the two types of steps in the initial rearrangement.

5. Construction of minimax optimal designs

The search for an optimal minimax design is an extremely difficult problem. Even if we restrict ourselves
to the LH sampling, the finite set of options has size (n!)s−1/(s− 1)! (if we ignore permutation of coordinates).
The exhaustive search method quickly becomes prohibitively time-consuming, even for s = 2. Instead, heuristic
optimization methods that, unfortunately, often deliver only the local minimum are being used. Some possible
optimization methods are listed in [34]. In this paper, one existing and one new method are employed.

5.1. Shuffling of coordinates based on simulated annealing

In our previous papers [9, 49] focused on different design criteria we used a heuristic optimization method
based on simulated annealing [20, 5]. A thorough description of the algorithm can be found in [50]. Starting
with a random LH design, new trial designs are generated by swapping a randomly chosen coordinate v of
a randomly chosen pair of points a and b: uav � ubv. The swap is accepted based on the difference in the
minimax distance value of the original and new designs ∆φmM = φmM(Di+1) − φmM(Di) with a probability
based on the Boltzmann distribution

P =

1 ∆φmM ≤ 0
1

1 + exp (∆φmM/t)
∆φmM > 0

(8)

For the periodic version, the criterion φmM is used. Temperature t governs the process and decreases throughout
it from the initial to the final temperature in steps. At each temperature step, a user defined number of trial
swaps is performed.

Simulated annealing is a heuristic optimization technique in which φmM or φmM are typically calculated
hundreds of thousands of times. In the case of the minimax or periodic minimax criteria, the computational
burden associated with so many evaluations is huge, and the temperature evolution and number of trial swaps
at each temperature step (known as the cooling schedule) needs to be drastically modified to reduce the number
of evaluations of the criteria. The price paid for such a reduction is that only near-optimal solutions are found.

5.2. Time-stepping algorithm for the construction of distance-based designs

The insufficient performance of the switching algorithm for the minimax criterion resulted in the development
of a completely new optimization method. Vořechovský et al. [51] argued that the distance-based criteria for
a design consisting of n points can be viewed in analogy with a system of n particles in s-dimensional space: the
particles, each having s coordinates, represent the design points. Various formulas for the optimality criteria
involve terms for all pairs of points, and these terms can represent the pairwise potential energy. Given this
analogy, designs can be constructed by minimizing the total potential energy of a system of particles via the
dynamical simulation of an N-body system [25]. As argued in [51], the (periodic) minimax criterion provides
potential that changes abruptly and is therefore not suitable for a fully dynamic solution. Instead, this paper
proposes a simplified version of the dynamical algorithm that neglects particle inertia and is well suited for the
maximin and minimax criteria. It can employ the intersite and periodic metric equally well.

At the beginning, a random arrangement of particles is generated. The simulation proceeds in time steps
in which only selected particles i are displaced from their current positions: ui(t + ∆t) = ui(t) + si(t). The
magnitude of the displacement (the Euclidean length of the steps s(t)) decreases with increasing step number
(time t). When the miniMax (mM) criterion is to be minimized, up to (s+1) particles lying on the surface of the
largest empty hypersphere (forming the critical simplex) are displaced towards the center of this hypersphere. In
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such a new configuration, the criterion is recalculated by identifying the current critical simplex and displacing
its points. The displacements depend only on the current positions; no information from the previous step is
utilized (one can think of neglected inertia in a dynamical system of particles). Such a displacement is called the
mM-step and is illustrated in Fig. 6b. Similarly, when the maximin (Mm) criterion is targeted, the individual
steps proceed by selecting the nearest pair of particles and moving the two particles in opposite directions (see
Fig. 6a for an illustration).

Experience shows that when an algorithm solely employs a series of mM-steps, particle clusters typically
appear as there are no repelling forces between the particles. Analogously, when the algorithm involves a se-
quence of Mm-steps only, clusters are eliminated but large empty regions may remain unfilled. Therefore, before
imposing the target criterion, we recommend always performing initial rearrangement by alternating both types
of steps. The type of step to be performed is selected based on the comparison of two current length parameters:
dmin and dmax. The definitions of these lengths are: dmin = |`char−φMm| and dmax = |c φmM−`char|, where φMm

is the Maximin criterion, i.e., the smallest pairwise distance, φmM is the radius of the largest empty hypersphere
and c =

√
2(s+ 1)/s is the ratio between the circumradius and the edge length of a regular simplex (for the

periodic version replace φmM and φMm with φmM and φMm). When dmin > dmax, the spreading of the cluster
is applied (Mm-step), otherwise the shrinking mM-step is taken.

Once the initial rearrangement is finished, the algorithm can proceed with a series of steps of a single
type depending on the target criterion. In order to increase the robustness of the algorithm, we recommend
always applying a small random perturbation to each point in a random direction after performing a certain
number of steps. The magnitudes of these perturbations also decrease with the number of steps (analogously
to the decreasing excitations in annealing due to decreasing temperature). Even though these perturbations
usually increase the value of the criterion, they can help to prevent locking in a local minimum. Once the final
configuration is reached, the coordinates of the points are taken as the design.

It is worth noting that the periodic version of the time-stepping algorithm typically finds the solution faster
than the intersite version. The intersite version is constrained by boundaries and more point displacements are
needed to satisfy these constraints. In contrast, the periodic version is unconstrained and progressively develops
towards the “closest” of all the shifts of the optimal pattern with the lowest minimax criterion.

If LH design is desired, a postprocessing step must be taken in order to distribute the coordinates uniformly
along each dimension. The predefined coordinates are selected as midpoints of n segments of the unit length:
(πi− 1/2)/n, where the integers πi are the rank numbers of points along the current coordinate. We remark that
the latinized sample obtained with “free points” may not necessarily be the best possible LH sample given the φp
criterion. However, the application of latinization via post-processing in this manner is much more efficient than
the combinatorial optimization that shuffles predefined coordinates based on the simulated annealing algorithm
described in Sec. 5.1.

5.3. Comparison of SA and TS algorithm performance

The designs generated by the simulated annealing (SA) and time-stepping (TS) algorithms are compared
from the viewpoint of the following criteria: the (i) standard minimax, (ii) periodic minimax, (iii) periodic phi
criterion with power p = s+ 1 and (iv) wrap around discrepancy. We intend to show via such comparison the
versatility of the proposed periodic minimax criterion: it provides designs with relatively good quality also with
respect to criteria for which they were not directly optimized.

We also intend to compare performance of the φmM designs with random designs or designs optimized by
other criteria from the literature. The designs under comparison are:

� random LH designs as a reference solution.

� a quasi Monte Carlo (QMC) sequence used widely for numerical integration. From the pool of available
QMCs we have selected the Sobol’ sequence. The sequence is generated from the R package “fOptions”
[36, 52] using the “runif.sobol” function.

� optimal minimax and periodic minimax designs obtained by simulated annealing (denoted φmM LH SA
and φ̄mM LH SA, respectively). These designs are optimized in 2 and 3 dimensions only due to their heavy
computational demands, and they are limited to the L space.

� optimal minimax and periodic minimax designs obtained by a time-stepping algorithm without latinization
(denoted φmM TS and φ̄mM TS, respectively). The effectiveness of the time-stepping algorithm allows
optimization even in dimension 5, but we only studied it up to n = 512 points.

� latinized designs from the previous item (denoted φmM LH TS and φ̄mM LH TS, respectively).

� optimal periodic phi LH designs (labeled φ̄s+1 LH) obtained by simulated annealing optimization with the
distance exponent p = s+ 1. These designs were presented in [49] and are included here for comparative
purposes.

8



Figure 7: Medians (thick solid lines) and 5th-95th percentiles (shaded areas) of intersite minimax, periodic minimax, phi and
wrap around L2 discrepancy criteria computed on designs optimized with respect to different criteria and via different optimization
methods. Three cases are considered: s = 2 (top row), 3 (central row) and 5 (bottom row). All LH designs are marked with solid
circles.

Fig. 7 shows medians and 5th and 95th percentiles of the minimax (left), periodic minimax, periodic phi and
wrap around L2 discrepancy (right column) criteria values calculated based on r = 100 optimized designs in 2
and 3 dimensions. In 5 dimensions, the number of designs is r = 50.

The proposed time-stepping algorithm delivers the best results in both the minimax and periodic minimax
cases. After latinization, these designs become worse as the latinization does not seek the optimal LH design.
This is emphasized for the intersite minimax value. The simulated annealing optimization performs better than
latinized time-stepping for low n as it is able to find the optimum among all LH designs. As n grows, simulated
annealing with a reduced cooling schedule becomes too inefficient to deliver designs that perform well. Aside
from the random LH designs, the QMC sequence is the worst design under comparison, though on the other
hand it is capable of generating designs fast and simply, and provides the option to repetitively extend the
sample size n.

The periodic phi optimal LH designs show a relatively low periodic minimax value considering they were not
optimized with respect to this criterion. More interestingly, the periodic phi value of the compared designs is
almost identical for (i) both raw and latinized minimax designs optimized by the time-stepping algorithm and
(ii) periodic phi optimal LH designs. This confirms our hypothesis about the good sample uniformity of the
periodic minimax designs.

The wrap around L2 discrepancy (WD2), evaluated in the last column of Fig. 7, measures the difference be-
tween the empirical distribution function associated with the design D and the uniform distribution over U [15].
As shown in [49], the WD2 criterion favors statistically uniform designs. Fig. 7 shows that the discrepancies of
the φ̄mM-optimized LH designs (periodic minimax LHDs) are very low; these designs are outperformed by the
QMC for higher n in higher dimensions only, i.e., by sequences that have been purposely developed to have low
discrepancy.

Finally, we derive the conservative lower limit of the minimax criterion as the radius of the hypersphere
circumscribed to a simplex of a regular grid, denoted as P. The grid itself is thoroughly described in the
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Figure 8: Relative frequencies f of sampling calculated by the optimization of r = 104 LH designs with respect to the intersite
minimax (φmM) criterion. The top row shows histograms obtained by simulated annealing optimization, the bottom row histograms
generated via a raw time-stepping procedure without latinization, and the central row histograms obtained by latinizing the time-
stepping solution.

Appendix of [51]. The radius reads

φmM(P) =

√
s `char

2s
√

(s+ 1)s+1
=

√
s

2s
√

(s+ 1)s+1

1
s
√
n

(9)

Fig. 7 shows that the φ̄mM TS designs are very close to that theoretical limit in two dimensions. In three and
five dimensions, the inevitable stretching of the ideal P grid leads to greater deviations from the theoretical
limit. In any case, the best possible rate of decrease is maintained: φ̄mMTS ∝ n−1/s; see the triangles in Fig. 7
that mark the exponents of power laws by the slopes of the straight lines.

6. Statistical uniformity of φmM and φmM optimal designs

In order to assess the statistical (non)uniformity, we generated φmM optimal designs via the simulated
annealing process and also via the time-stepping algorithm r = 10 000 times. The domain was divided into bins
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Figure 9: Relative frequencies f calculated for LH-sample sets with the minimax (φmM) and periodic minimax (φmM) criteria
for n = 9 and s = 2 based on optimal solutions found by an exhaustive search; left: map created by four optimal solutions for
φmM(compare with the “less accurate” solution in Fig. 8, top left); middle: maps constructed from solutions with φMm ≤ 0.30,
0.31, 0.32 or 0.35; right: an ideally uniform map for the periodic version (φMm) along with all 12 unique solutions.

(the LH bins were used directly) and we calculated the absolute frequency, f , of sampling each bin over these r
designs. If the criterion is statistically uniform, all the bins shall, for large r, share the same absolute frequency,
which should be equal to the total number of sampled design points rn divided by the number of bins ns. We
therefore calculated and plotted the relative sampling frequency, which is the absolute frequency divided by the
ideal one

f = f
(rn
ns

)−1
= f

ns−1

r
(10)

For a statistically uniform design, limr→∞ f = 1 for all bins. The results of the analysis for s = 2 and
n ∈ {9, 36} and also s = 3 and n = 9 are plotted in Fig. 8 for designs optimized by simulated annealing (top
row), time-stepping algorithm (bottom row) and time-stepping algorithm with latinization (central row). The
figure confirms that the usage of the intersite metric produces strongly statistically nonuniform designs. When
histograms from LH designs optimized with respect to the φmM criterion are compared with those of Audze-
Eglajs, φp or φMm from [9, 49], similar patterns appear. The corners are strongly undersampled, and then there
are usually (hyper) sphere-like patterns of alternating oversampled and undersampled regions. Empty corners
are also visible in Fig. 1 (top row), where periodic repetitions of a design are plotted.

Fig. 8 also shows that designs delivered by simulated annealing and the time-stepping algorithm are quite dif-
ferent. Time-stepping optimization is performed in U space, and subsequently the optimal solution is projected
into L space by latinization. The latinization unfortunately deforms the optimal designs to create suboptimal
LH designs with a high degree of randomness. Therefore, the histograms of latinized time-stepping solutions
exhibit less contrast compared to histograms obtained with the help of simulated annealing.

The same maps can also be plotted for φmM designs. However, for this statistically uniform criterion, the
maps are just uniformly gray with small random fluctuations of relative frequency around 1. The fluctuations
decrease with r. In other words, the periodic criterion delivers statistically uniform designs.

For small enough problems (low n and s) it is possible to run an exhaustive search through the complete set
of all possible LH designs and select those with minimum φmM or φmM. van Dam [47] completed an exhaustive
search for the minimax design with Euclidean intersite metric in two dimensions up to n = 27; the results are
available at https://spacefillingdesigns.nl.

We present the results from our exhaustive search for both φmM and φmM criteria in Fig. 9 for s = 2 and
n = 9. In case of the periodic metric, there are 972 LH designs for which φmM(D) = 0.2374. When the histogram
is plotted, a perfectly uniform frequency map on the right hand side of Fig. 9 is obtained. All the LH bins are
sampled with the same probability thanks to the shift invariance of the proposed φmM criterion. Indeed, among
these 972 designs, only 12 are unique – none of them can be obtained by shifting the others. They are plotted in
the bottom part of the right hand side of Fig. 9. Each of the 12 designs can be shifted 81 times (9 times along
each direction) within the LH-class restriction. In this specific case, each of the shifted designs is different, and
therefore 81× 12 = 972 solutions are found in total.

For the intersite metric the φmM criterion provides four optimal solutions that are plotted at the bottom on
the left hand side of Fig. 9. One can see that they are essentially only one solution flipped along the horizontal
and/or vertical axis. The histogram constructed from them (the map above them) is almost identical to the
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frequency map obtained by simulated annealing (Fig. 8 top left), proving that the optimization algorithm is
capable of finding the global minimum in this case. However, such excellent optimization behavior can hardly
be expected for greater n or s. Assuming that the optimization algorithm was terminated before the global
optimum was found, the set of obtained nearly optimal solutions would be richer. This can be mimicked by also
accepting nearly optimal solutions during the exhaustive search. The central part of Fig. 9 shows symmetric
quarters of the frequency maps plotted for the acceptance bounds φmM < 0.30, 0.31, 0.32 and 0.35. The number
of solutions quickly grows and the histogram becomes more uniform. Therefore, if poor cooling schedule settings
are used in simulated annealing optimization, a more statistically uniform design set is expected (leading to
a lower integration bias); however, worse sample uniformity should be expected and therefore also higher
estimation variance.

7. Application to the integration of analytical functions

In this and the next section, the designs optimized according to various criteria are used to integrate functions
in probability space. These functions are simple analytical functions which are easy to evaluate. Moreover they
can be integrated analytically so we can determine error of the numerical integration and compare this error to
find out which criterion provides the best designs. However, the realistic example of application would be some
complex finite element solution of mechanical or diffusion problem with random inputs. But such a function
would not allow us to determine the integration error as the exact integral cannot be computed. Nevertheless,
the experience shows [48] that majority of engineering problems are smooth functions and conclusions obtained
with simple analytical transformations hold also for most of the complicated simulation models formed, e.g., by
the finite element method.

We selected three analytical functions to be numerically integrated over the unit hypercube. All of them
are functions of an input vector U consisting of s independent variables uniformly distributed over the interval
from 0 to 1.

gexp (U) =

s∑
v=1

exp
[
−
(
Φ−1(Uv)

)2]
(11)

gprod(U) =

s∏
v=1

Φ−1(Uv) (12)

gsob(U) =

s∏
v=1

|4Uv − 2|+ cv
1 + cv

(13)

The first two functions are taken from [9, 48]; they actually use independent standard Gaussian variables Xv

as they employ memoryless transformation through the inverse Gaussian distribution function: Xv = Φ−1(Uv).
The last function, often used in sensitivity analysis [4], is called the Sobol’ function. We choose cv to be
Fibonacci numbers.

One can easily compute the exact mean and standard deviation of these three functions

µexp ≈ 0.577 s σexp ≈ 0.337
√
s (14a)

µprod = 0 σprod = 1 (14b)

µsob = 1 σsob =

√√√√−1 +

s∏
v=1

[
1

3(cv + 1)2
+ 1

]
(14c)

The numerical estimation of these variables is performed according to Eq. (2). The mean values and standard
deviations are estimated via the standard point estimators

µ̂G(D) ≈ 1

n

n∑
i=1

gG(ui) (15)

σ̂G(D) ≈

√√√√ 1

n− 1

n∑
i=1

[gG(ui)− µ̂G(D)]
2

(16)

We are interested in the error of such an estimation εI = |I − Î| where I and Î represent the exact and
estimated value of a particular quantity, respectively. The errors computed with the help of optimized designs
are shown in Fig. 10 for the standard deviation of the exponential and product functions, and the mean value
of the Sobol’ function. The designs under comparison are the same as in Section 5.3, except the periodic phi
designs (φs+1) are omitted. The median and 5th-95th percentiles of the error based on r = 50 − 100 designs
are plotted.
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Figure 10: Convergence of integration errors for three simple analytical functions in 2, 3 and 5 dimensions for various design criteria.
The lines represent medians and the shaded areas ranges from the 5th to 95th percentile. All LH designs are marked by solid circles.

� The reference random LH designs exhibit large integration error accompanied by large error variance,
because the space-filling property is not optimized.

� The QMC sequence sometimes shows excellent behavior with the lowest error, but also often exhibits
very large errors. Which of these scenarios occur seems to be unpredictable. Since there is just a single
design for each n, there is no variance associated with QMC when studied on Eqs. (11) and (12). Eq. (13)
is, however, sensitive to permutation of variables. We therefore computed the numerical integral for all
possible permutations of variables and reported the median and percentiles from these results.

� The φmM criterion delivers designs with relatively low error variance but a large error median. The lack
of statistical uniformity gives rise to bias in the integration that is revealed here. In some cases (for
example for σprod error in 3 dimensions) the designs perform surprisingly well, but we attribute this to
randomly occurring incidents in which there is a good correspondence between the integrated function
and a coincidentally suitable pattern in the design. However, in most cases their error is greater than the
average error of random LH designs. Fig. 10 shows results for only one construction method (φmM LH
TS), the other methods (φmM TS and φmM LH SA) provide qualitatively similar results. Because these
designs are strongly biased, we have eliminated them from further consideration.

� The best designs seem to be the proposed φmM designs. They deliver low errors and also stable convergence
(robustness). Only results for the latinized time-stepping contruction method are shown (φ̄mM LH TS
designs). The raw designs from time-stepping optimization (φ̄mM TS) give similar results for exponential
and product functions, but the latinized designs are better in the case of the Sobol’ function, which
apparently takes advantage of the LH restriction. The designs optimized via simulated annealing (φ̄mM

LH SA) are also omitted. They are good for low n but become worse for large n due to the insufficient
cooling schedule.

8. Integration of the subspace formed by Chebyshev polynomials

The robustness of numerical integration can only be fully revealed by testing a large number of different
functions. We selected functions formed by Chebyshev polynomials of the first kind. These polynomials can be
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defined by simple recursion on interval u ∈ 〈−1, 1〉. Combined with mapping to our interval of interest 〈0, 1〉,
the recursion yields

T0(u) = 1 (17)

T1(u) = 2u− 1 (18)

Tk(u) = 2(2u− 1)Tk−1(u)− Tk−2(u) (19)

These polynomials form an orthogonal basis on 〈0, 1〉; arbitrary function f(u) can be written as an infinite sum
or approximated by a finite sum

g(u) =

∞∑
k=0

akTk(u) ≈
K∑

k=0

akTk(u) (20)

where K is the truncation threshold and ak are coefficients associated with the particular basis polynomial.
The extension of this concept into an s dimensional unit hypercube is straightforward. Our basis functions

are now s dimensional products of unidimensional polynomials of arbitrary order

g(u) =
∑
k

akTk(u) ≈
K∑
k

akTk(u) (21)

where Tk(u) =

s∏
v=1

Tkv (uv) (22)

k is a vector of integers collecting orders of individual unidimensional polynomials. Considering only integers
up to threshold K (as symbolically denoted in the second summation of Eq. (21)), the infinite series is truncated
and g(u) is only approximated.

The integration of individual unidimensional Chebyshev polynomials can be performed analytically

1∫
0

Tk(u) du =

{
0 for odd k

1
1−k2 for even k

(23)

and the integration of multidimensional polynomials is the product of unidimensional integrals

Ik =

∫
[0,1]s

Tk(u) du =

s∏
v=1

∫ 1

0

Tkv (uv) duv (24)

The integration of any function represented by the multidimensional Chebyshev basis then transforms into the
summation of basis integrals weighted by the coefficients

Ig =

∫
[0,1]s

g(u) du ≈
K∑
k

akIk (25)

Estimation of the same integral using a given design D with n points reads

Îg(D) ≈
K∑
k

akÎk(D) (26)

where Îk(D) =
1

n

n∑
i=1

Tk(ui) (27)

The error of the numerical integration is bounded by a linear combination of errors due to numerical integration
of individual basis terms.

εI(D) = |Ig − Îg| ≤
K∑
k

|ak|εk(D) (28)

where εk(D) = |Ik − Îk| (29)

Any design that integrates basis polynomials well also performs well when integrating an arbitrary function
obtained from the linear combination of the basis. The robustness of the periodic minimax design during
integration is therefore demonstrated by its ability to integrate basis polynomials well.
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Figure 11: Integration error evaluated using Chebyshev polynomials for s = 2, 3 integrated by a design of 1024 points optimized
with respect to various criteria.

We consider K = d s
√
n e to be the maximum polynomial order for which integration error is measured. For

higher K, polynomials have more changes of signs inside the interval 〈0, 1〉 than the total number of points
used for integration. Therefore, one can hardly expect good performance for K > d s

√
ne.

The performance of a design should not depend on the order of modes; we would like to see the same
performance for arbitrary permutations of k. For that reason, we always integrate all permutations of k and
report the statistical data. Only sorted vectors k are therefore used, i.e., k = {1, 1, 2} actually represents all 3
different permutations {1, 1, 2}, {2, 1, 1} and {1, 2, 1}. We can also order all the sorted k that have no item
greater than d s

√
ne in the following way: ka ≤ kb ⇔ ∀v : kav ≤ kbv.

Fig. 11 shows integration performance in dimensions two and three for different mode vectors k using
n = 1024 points. Separate graphs are shown for the median of the error (top graph) and the 95th percentile
(bottom graph). We eliminated all the non-periodic designs from the comparison since we had already shown
that they result in strong bias. We also omitted the φmM design generated by simulated annealing (φ̄mM LH SA),
since for this large number of points shuffling optimization already suffers from an insufficient number of trial
swaps. For the sake of clarity, we did not plot latinized φmM designs generated via the time-stepping process
(φ̄mM LH TS) because they exhibit behavior almost distinguishable from raw time-stepping (φ̄mM TS) designs.
The only difference is at modes where all the k items are zero except the last one, for example (0, 3), (0, 8) or
(0, 0, 7). For these single-degree mode vectors, the Chebyshev basis Tk is dependent on a single variable only,
and therefore the LH property becomes extremely advantageous. These modes are located in Fig. 11 at the
ticks of the horizontal axis labeled by the single nonzero integer in the vector k. At these particular locations,
the latinized time-stepping generated φmM designs exhibit significantly lower integration error compared to the
raw ones plotted.

Let us now comment on the individual curves shown in Fig. 11:

� The reference solution is again provided by the random LH designs. They exhibit large error and also
large variance. However, the error suddenly drops for the single-degree mode vector thanks to the LH
restriction.
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� The QMC Sobol’ sequences integrate with low errors for initial mode vectors, but the integration errors
quickly increase and they often even exceed the random LH design error.

� Numerical integration is often performed with re-randomized QMC sequences in the literature. For com-
parison purposed, we included scrambled Sobol’ sequence using two types of scrambling: Owen scrambling
[33] and also the Faure-Tezuka [45] type of scrambling; see also [18]. The median performance is more
stable, however, 95th percentile of error is relatively large which is a price paid for the re-randomization.

� The periodic phi criterion (described in [49]) shows excellent performance. These LH designs have the
lowest error from all of those presented, and also their variance seems to be the lowest.

� Finally, the φmM designs developed here via time-stepping are just a little bit worse than the phi designs.
If the latinized version of these designs were used, we would also obtain diminishing integration errors for
the single-degree mode vectors.

Along with the phi criterion, the φmM criterion (with a proper optimization method) is capable of delivering
robust designs that integrate all the basis functions with low error and low error variability. They are outper-
formed only for low Chebyshev modes by QMC sequences because these sequences are purposely prepared in
order to integrate very smooth functions well [8].

9. Conclusions

The designs optimized with respect to the standard (intersite) minimax distance are statistically nonuniform
and thus yield systematically biased estimators when used for numerical Monte Carlo type integration. When
the intersite distance is replaced by the periodic metric, the statistical uniformity is guaranteed and unbiased
estimators are obtained. The reduction of estimator variance is achieved by excellent space-filling property and
discrepancy (and thus also sample uniformity) of the minimax and periodic minimax optimal designs.

The numerical integration is tested using three simple analytical functions and thousands of functions gen-
erated in the space of multidimensional Chebyshev polynomials. In all the tests, the periodic minimax designs
exhibited low integration error. They are sometimes outperformed by quasi Monte Carlo sequences (represented
by the Sobol’ sequence), but these sequences often exhibit extremely large errors (greater than those obtained
from random LH designs). The excellent and stable integration ability (robustness) of the minimax designs
makes them the best choice (along with the phi designs included for comparison).

A disadvantage of the (periodic) minimax criterion is its extremely large computational complexity. In
an attempt to speed up the calculations, we have developed a method employing the incremental construction
of (periodic) Voronöı tessellation. The computational time is however still excessive and prohibits the use of the
otherwise reliable shuffling optimization method based on simulated annealing. Instead, a novel time-stepping
algorithm has been developed to deliver φmM optimized designs in reasonable time. Even with these algorithms,
one can hardly imagine the use of this design criterion in dimensions greater than five.
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