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Abstract 

The machinability of newly developed zirconia ceramics for CNC milling was investigated. 

The zirconia blanks were prepared by the gelcasting method and tested in the green and two 

pre-sintered states. All blanks exhibited uniform sintering shrinkage in all directions. The 

blanks were investigated from the viewpoint of surface milling roughness, quality of milled 

edges and sharp tips, and machinability of thin structures. The best milling results were obtained 

for the blanks pre-sintered at 900 °C/1 h. Mechanical properties of zirconia blanks, such as 

biaxial flexural strength, microhardness, indentation elastic modulus, and fracture toughness 

were determined in the green and pre-sintered states (900 °C/1 h and 1100 °C/1 h) and the 
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correlation with the milling results was discussed. The biaxial strength tests of sintered discs 

showed the advantage of optimized surface milling over conventional polishing. 

 

Keywords: Zirconia; gelcasting; pre-sintering; machinability; CNC milling; mechanical 

properties 

 

1. Introduction 

The milling of ceramics in the pre-sintered state has been an important shaping method in 

dentistry for many years and is also suitable in other engineering areas such as prototype testing 

and low-series production of parts [1-5]. The machinable ceramic blanks are often produced as 

pre-sintered ceramic discs compacted by cold isostatic pressing [6-10]. Several processing 

problems are connected with these blanks. Namely non-uniform shrinkage during sintering, 

caused by non-uniform particle compaction during pressing or the choice of suitable pre-

sintering temperature. Different shrinkage coefficients are provided directly by the 

manufacturers otherwise it must be verified in a laboratory. The non-uniform shrinkage of the 

blank can be solved during the CAD-CAM process but it brings additional difficulties [11-14]. 

An appropriate pre-sintering temperature ensures the required mechanical properties of the 

ceramic blanks [15, 16]. Sufficient hardness and strength are necessary for blank handling and 

milling but if these parameters are too high, they can detrimentally affect the quality of milled 

ceramics. The roughness of milled parts increases with higher pre-sintering temperatures [17]. 

Thus the choice of an appropriate pre-sintering heat treatment is critical. Another option is to 

mill the ceramic blanks in the green state, i.e. after the powder compaction before any heat 

treatment. Many studies were focused on the green milling, where the milling parameters such 

as the cutting speed, depth and width of cut [4, 9, 18-26] and surface roughness and strength [9, 

27] of the green blanks were evaluated. Chipping and cracks formation are common failures 
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arising during milling and the quality of edges is also often used to characterise the blank 

machinability. It was reported that in the case of blanks fabricated by cold isostatic pressing a 

higher quality of sharp edges can be achieved in samples of a lower strength [28, 29]. 

 

The aim of this study was to investigate newly developed machinable zirconia blanks prepared 

by the gelcasting method and to determine the effect of different pre-sintering states of the 

blanks on their machinability and mechanical properties. The effect of the surface roughness of 

milled samples on their strength after sintering was investigated as well.  

 

2. Experimental procedure 

2.1. Materials and preparation of machinable blanks 

Tetragonal zirconia powder (TZ-3YS-E, Tosoh, Japan) stabilized with 3 mol% of Y2O3 and a 

specific surface area of 6.8 m2/g was used to prepare zirconia blanks by the gelcasting method. 

The zirconia powder was dispersed in a premix solution of monomers to obtain a suspension 

with a powder loading of 45 vol%. The premix monomer solution was prepared by dissolving 

15 wt% of monomers in deionized water. Methacrylamide (109606, Sigma-Aldrich Chemie, 

Germany) and N, N´-methylene bisacrylamide (146072, Sigma-Aldrich Chemie, Germany) 

were used as the linear monomer and cross-linker, respectively. The ratio of the linear monomer 

to the cross‐linking monomer was 4:1. A commercial dispersant (0.5 wt% with respect to the 

ceramic powder), Dolapix CE 64 (Zschimmer & Schwarz, Germany), was used to stabilize 

ceramic particles in the suspension. The ceramic suspension was ball-milled with 1 mm zirconia 

balls (YTZ, Nikkato-Tosoh, Japan) for 48 h. A 5% water solution of ammonium persulfate 

(215589, Sigma-Aldrich Chemie, Germany) was added to initiate the polymerization of 

dissolved monomers at room temperature [30]. The amount of ammonium persulfate was 

0.175 wt% with respect to pure monomers in order to accomplish complete polymerization in 
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about 2 h. After the addition of the initiator, the ceramic suspension was immediately cast into 

the plastic moulds and gelled under nitrogen atmosphere. The zirconia bodies were removed 

from the moulds after gelation and dried in a climate box at 20 °C, with the relative humidity 

decreasing from 98 % to 60 % over a period of 168 h, followed by final drying under laboratory 

conditions. Zirconia blanks were pre-sintered at 900 and 1100 °C with a dwell of 1 h. The 

heating rate was 50 °C h-1 up to 500 °C and then 120 °C h-1 up to the pre-sintering temperature. 

Two types of disc-shaped ceramic blank were prepared with diameters of 30 and 40 mm and 

thicknesses of 5 and 10 mm, respectively.  

 

2.2. CAD-CAM milling 

Autodesk® Inventor® Professional 2018 with HSM Ultimate 2018 module was used to design 

the models and setup of milling paths, and to generate NC codes for the CNC milling machine 

(HWT E-442 CNC TROLL, AZK, Czech Republic). Two types of diamond-coated mills with 

end diameters of 2 mm and work lengths of 20 mm were used for the milling of ceramics blanks: 

a ball end mill (D-EPDB-2020-20 Epoch21, MMC Hitachi Tool Engineering Europe, 

Germany) and a flat end mill (D-EPDR-2020-20-02 Epoch21, MMC Hitachi Tool Engineering 

Europe, Germany) with a corner radius of 0.2 mm. The milling tools were checked for wear 

damage and they were replaced when any wear of the diamond coating was observed. All 

ceramic blanks were fastened using a vacuum table and before the milling tests they were first 

pre-milled in two steps to a default height using the flat end mill. A spiral strategy of milling to 

default heights of 4 mm and 8 mm for 30 mm and 40 mm discs, respectively, was employed. 

The milling parameters were following: the depth of cut ap = 0.5 mm, and the width of cut ae = 

0.8 mm for initial roughening, and ap = 0.1 mm and ae = 0.8 mm for finishing in the last step. 

The spindle and feed speeds of 20 000 rpm and 600 mm min-1, respectively, were used in all 

milling experiments. The models for milling experiments are shown in Fig. 1. The surface 
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milling roughness (Fig. 1a), quality of milled edges and wedge tips (Fig. 1b), and machinability 

of thin structures (Fig. 1c) were tested. Details of the individual experiments will be specified 

later. All the milling experiments were carried out with zirconia blanks in three processing 

states: green (dried only), pre-sintered to 900 °C/1 h, and pre-sintered to 1100 °C/1 h. 

 

 

Fig. 1 Models designed for the milling experiments, showing a) spiral strategy on a flat disc 

for the surface roughness evaluation, b) wedges for the evaluation of edge and tip quality, and 

c) pins and lamellae for the evaluation of machinability of thin structures. 

 

2.3. Post-milling processes and sintering 

The milled surface of each sample was blown by low-pressure air in order to remove the 

ceramic dust after milling and the cleaned samples were sintered in an air atmosphere. The 

heating rate was 600 °C h-1 up to a temperature of 780 °C and then 300 °C h-1 up to a sintering 

temperature of 1450 °C with a dwell of 2 h at the sintering temperature. The samples milled in 

the green state (dried only) were pre-sintered to 800 °C before the final sintering schedule was 

applied.  

 

 

2.4. Evaluation methods 

The surface roughness of horizontal surfaces was investigated using a DektakXT stylus 

profilometer (Bruker Corporation, USA) according to EN ISO standards [31, 32]. The 
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profilometer tip radius 12.5 µm was used. The direction of the recorded roughness profile was 

always perpendicular to the toolpath direction. The data obtained by the profilometer were 

processed by the Gwyddion software [33] and the roughness parameters Ra (arithmetical mean 

deviation from the profile mean line) and Rz (average maximum peak to valley of five 

consecutive sampling lengths) were evaluated. The morphology of the milled surface and the 

milling defects were analysed using an electron scanning microscope (SEM) (Verios 460l, FEI, 

Czech Republic). The microhardness, HV 0.1, as well as the indentation elastic modulus, EIT, 

were measured on the machined surface of milled discs prior to sintering in accordance with 

the EN ISO 6507 standard [34], using an instrumented hardness testing system Zwick Z2.5 

equipped with the ZHU0.2 micro hardness head (Zwick/Roell, Germany). A minimum of 20 

indents were used to calculate an average hardness. The fracture toughness values were 

determined using a universal testing machine (8862, Instron, USA) by the chevron notch beam 

(CNB) technique in the three-point bending configuration with a span of 16 mm and a crosshead 

speed of 5 µm min-1. The fracture toughness values for CNB specimens were calculated using 

Blum’s slice model [35]. A fractographic analysis was conducted on the fracture surfaces of 

broken specimens using SEM (Tescan Lyra 3 XMU, Czech Republic) to identify the acting 

fracture mechanisms for each treatment. The biaxial strength was determined using a universal 

testing machine (8862, Instron, USA) in the ball-on-3-balls biaxial bending configuration for 

green, pre-sintered and sintered ceramic discs (disc cast to 30 mm in diameter and milled to 4 

mm in height) with supporting and loading ball diameter of 17.463 mm (giving a supporting 

circle diameter of approx. 20 mm). Loading at a crosshead speed of 0.5 mm min-1 was used. 

More details of the biaxial strength measurements can be found elsewhere [36]. The parameters 

of the Weibull strength distribution were calculated numerically, using the maximum likelihood 

method, in accordance with the EN 843-5 standard [37]. At least 20 valid strength values for 

each batch were statistically analysed. 
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3. Results and discussion 

3.1. Blank shrinkage  

It is essential to know the sintering shrinkage of ceramic blanks before milling to correctly 

design the model dimensions of a milled part in order to obtain the required dimensions of the 

final sintered part. Three testing cubes with an edge of 7 mm were milled at different positions 

in a 40 mm disc and the sintering shrinkage in all directions was measured (see Fig. 2). 

 

Fig. 2 Model designed for the milling of test cubes for shrinkage measurements. 

 

A summary of the sintering shrinkage of the green and pre-sintered blanks is given in Table 1. 

As expected, the shrinkage decreased with increasing pre-sintering temperature. It is obvious 

from the results that the gelcast zirconia blanks exhibited a similar shrinkage not only at 

different positions in the blank but also in all directions. Thus the benefit from gelcast blanks 

for milling was verified and the shrinkage mismatch, common to pressed ceramic blanks [11, 

12, 17, 38] was overcome. 

 

Table 1 Shrinkage of ceramic blanks. 

Pre-sintering state 
Linear shrinkage* (%) 

X Y Z 

green 20.41 ± 0.25 20.47 ± 0.15 20.41 ± 0.05 

900 °C/1 h 19.90 ± 0.12 19.94 ± 0.15 19.95 ± 0.19 
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1100 °C/1 h 18.90 ± 0.08 18.95 ± 0.12 19.04 ± 0.03 

* An average value is given with the 95% confidence interval. 

 

3.2. The surface roughness of milled discs 

Spiral milling was used to obtain a flat horizontal surface, i.e. a milled surface oriented 

perpendicularly to the tool axis, on a pre-milled 30 mm disc (see Fig. 1a). The milling 

strategies applied are shown in Table 2.  

 

Table 2 Milling strategies and cutting parameters for flat surfaces. 

Milling strategy 
Depth of cut ap Width of cut ae  

(mm) (mm) 

B-0.1-0.2 0.1 0.2 

B-0.5-0.2 0.5 0.2 

B-0.1-1.0 0.1 1.0 

B-0.5-1.0 0.5 1.0 

B-0.1+0.1-0.2 * 0.1+0.1 0.2 

F-0.1-0.4 0.1 0.4 

F-0.5-0.4 0.5 0.4 

F-0.1-1.5 0.1 1.5 

F-0.5-1.5 0.5 1.5 

F-0.1+0.1-0.4 * 0.1+0.1 0.4 

* Two layers with indicated depths of cut were removed in these strategies. 

 

The strategy abbreviations specify the milling parameters. The first capital letter in the strategy 

abbreviation determines the type of the milling tool (“B” for the ball end mill and “F” for the 

flat end mill) and the two following numbers determine the depth of cut (ap) and the width of 

cut (ae). These milling strategies were applied to the green and pre-sintered blanks. The 

roughness of surfaces milled with different milling strategies was evaluated before and after 

sintering to determine the sintering effect on the roughness parameters. The samples after 
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sintering exhibited in most cases lower roughness than the samples measured before sintering. 

This is contrary to a recent study [39], where the commercially available zirconia discs were 

machined in a similar manner. It was reported that after sintering, the milled surfaces roughened 

due to an induced grain growth and phase transformation [17, 39]. In our case, the slight surface 

roughening, which was observed in only a few samples, was attributed rather to the sintering 

of milling debris on the surface than to grain coarsening and phase transformation. 

 

Fig. 3 Surface roughness parameters measured on sintered samples after milling with the ball 

end mill. The error bars show 95% confidence interval. 

 

The roughness parameters measured on sintered samples after milling with the ball end mill are 

shown in Fig. 3. It is obvious that in the case of the ball end mill the surface roughness was 

mainly dependent on the width of cut. The increase in the width of cut from 0.2 to 1.0 mm 
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resulted in an increase in the roughness values by one order of magnitude. The depth of cut was 

less important. The lowest surface roughness (Ra = 0.9 µm and Rz = 3.9 µm) was achieved 

using the finest strategy (B-0.1-0.2) on the blank pre-sintered at 900 °C/1 h. Milling two layers 

with the fine strategy did not improve the roughness parameters. Milling the blank in the green 

state (dried only) provided slightly worse roughness than milling of the blank pre-sintered at 

900 °C/1 h. However, short cracks appeared on the surface of the green blank after milling. 

These cracks were located perpendicularly to the direction of tool rotation and had a length of 

about 5 µm. They were regularly repeated with spacing of about 2 µm. Several cracks are 

highlighted by dashed lines in Fig. 4a. Surprisingly, the cracks visible before sintering 

disappeared after the sintering process (see Fig. 4b). Such cracks were not observed after 

milling with the flat end mill.  

 

 

 

Fig. 4 SEM micrographs of a green blank milled with the B-0.1-0.2 strategy showing a) cracks 

on the milled surface (the detail of the cracks is shown in the inset) and b) defect-free surface 

of the same sample after sintering. 

 

The roughness parameters measured on sintered samples after milling with the flat end mill are 

shown in Fig. 5. The roughness parameters after milling with the flat end mill were 1-2 orders 

of magnitude lower than the roughness parameters after milling with the ball end mill. 
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Fig. 5 Surface roughness parameters measured on sintered samples after milling with the flat 

end mill. The error bars show 95% confidence interval. 

 

The effect of different strategies with the flat end mill on surface roughness was not very 

pronounced. The lowest surface roughness (Ra = 0.1 µm and Rz = 1.2 µm) was achieved using 

the finest milling strategy (F-0.1-0.4) on the blank pre-sintered at 900 °C/1 h. Similar to the ball 

end mill, milling two layers using the fine strategy with the flat end mill did not result in 

decreased roughness parameters. Milling with the flat end mill provided not only a much lower 

surface roughness than the ball end mill but it also took much less time to mill the surface. The 

lower milling time was the result of a larger width of cut and thus a shorter milling path. The 

calculated times for the tested milling strategies are given in Table 3. Although the flat end mill 
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is of limited use in the milling of complex parts with curved surfaces, it should be the preferred 

tool for large flat surfaces.  

 

Table 3 Milling times of different milling strategies. 

Strategy Time (min:sec) Strategy Time (min:sec) 

B-0.1-0.2 
6:35 

F-0.1-0.4 
3:26 

B-0.5-0.2 F-0.5-0.4 
B-0.1-1.0 

1:33 
F-0.1-1.5 

1:08 
B-0.5-1.0 F-0.5-1.5 
B-0.1+0.1-0.2 12:54 F-0.1+0.1-0.4 6:37 
 

 

3.3. Quality of edges and tips  

To study the quality and sharpness of milled edges and tips a model was designed (see Fig. 1b), 

where five wedges were milled using five selected strategies with the ball end mill. The wedges 

were 4 mm thick and had an edge of 9.7 mm. The radius of the wedge tip, r, and the maximum 

chipping distances on the wedge edges for both the tool entry side, HE, and the tool exit side, 

HX, were used to evaluate the quality of edges and tips for different blanks and milling 

strategies. Fig. 6 shows the evaluation criteria for the edge and tip quality. The results obtained 

on sintered bodies are summarized in Table 4. 
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Fig. 6 Evaluation criteria for the edge and tip quality. 

 

Table 4 Parameters evaluating the quality of milled edges and tips in sintered test bodies.  

Strategy 
Green 900 °C/1 h 1100 °C/1 h 

r HE HX r HE HX r HE HX 

 (µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm) (µm) 

B-0.1-0.2 129 116 85 71 42 184 66 0 41 

B-0.5-0.2 161 160 86 149 147 80 160 198 100 

B-0.1-1.0 249 81 68 482 199 0 55 0 0 

B-0.5-1.0 133 66 242 141 66 64 89 49 50 

B-0.25-0.25 199 88 68 116 0 0 73 120 33 
 

The samples pre-sintered at 1100 °C/1 h exhibited the lowest radii of the milled wedge tips, i.e. 

the sharpest tips. The chipping on the edges was more random. Anyway, we can conclude from 

these experiments that the best quality of edges and tips was obtained for the blanks pre-sintered 

at 1100 °C/1 h and milled with strategies with a small depth of cut. Fig. 7 compares the SEM 

images of sintered wedges milled using the finest strategy (B-0.1-0.2) from a green blank and 

a blank pre-sintered at 1100 °C/1 h. Similar results were reported in [16], where the authors 

machined zirconia blanks prepared by die pressing. They achieved the best quality of edges in 

a sample pre-sintered at 1000 °C/4 h. 
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Fig. 7 SEM micrographs of wedges after the sintering of a) a sample milled in the green state 

(arrows indicate chipped areas) and b) a sample milled in the pre-sintered state (at 1100 °C/1 h). 

 

3.4. Machinability of thin structures 

For the verification of the machining possibilities of tested blanks, the pins (with a nominal 

diameter of 0.3, 0.4, 0.5, 0.7, and 1.0 mm) and lamellae (with a nominal thickness of 0.1, 0.15, 

0.2, 0.3, 0.4, and 0.5 mm), all of them with a height of 6.5 mm, were machined by the B-0.5-0.2 

strategy. The model of tested body is shown in Fig. 1c. It is clear from the comparison of milled 

samples (Fig. 8a) that the best results were obtained for the blank pre-sintered at 900 °C/1 h. 

All pins whose nominal diameter was 0.4 mm or higher were successfully machined. The 

thinnest lamella with a nominal thickness of 0.1 mm has small chipping defects on the edges. 

The sample milled from the blank pre-sintered at 1100 °C/1 h reached a similar result but not 

all the thinnest pins and lamellae were defect-free. The worst results were obtained for the blank 

in the green state, where only pins with a nominal diameter of 0.7 mm survived the milling and 

only the thickest lamella with a nominal thickness of 0.5 mm was defect-free. Sintered pins and 

lamellae are depicted in Fig. 8b. No visible deformations such as shape irregularities, cracks or 

pores were observed after sintering. This confirmed the uniform shrinkage of blanks in all 

directions during sintering as discussed earlier. The thinnest pins reached a diameter of 320 µm 

and the thinnest lamella thickness was 80 µm in the sintered sample milled from the blank pre-

sintered at 900 °C/1 h, which is consistent with the shrinkage measurements (see Table 1).  
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Fig. 8 Photographs of pins and lamellae a) as milled and b) after sintering. 

 

3.5 Mechanical properties of blanks and sintered ceramics 

The mechanical properties (hardness, flexural strength, fracture toughness, and Young’s 

modulus) of green and pre-sintered blanks are compared in Fig. 9. It is evident from Fig. 9 that 

the blank providing the best milling behaviour, i.e. the blank pre-sintered at 900 °C/1 h, 

exhibited the lowest hardness, strength, elastic modulus, and fracture toughness. Similar results 

were found in [28], where the best machining properties were obtained for a compact of a 

relatively low strength in the pre-sintered state.  
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Fig. 9 Mechanical properties of green and pre-sintered blanks. The error bars show 95% 

confidence interval. 

 

It is supposed that these low mechanical parameters of the blank led to the optimal cutting off 

process because only small fragments of the base material were removed, with a minimal 

damage zone formed in the surrounding material. The small damage zone was also supported 

by the low elastic modulus value. When the material was elastically loaded during the cutting 

process, the generated elastic stress field was acting only over a short distance. The 

microstructure of the material pre-sintered at 900 °C/1 h exhibits only partially joined (sintered) 

powder particles. However, the effect of the mechanical parameters on the milling behaviour 

of ceramic blanks must be more complex. The green blanks with mechanical properties being 

very close to the blanks pre-sintered at 900 °C/1 h provided the worst milling results, whereas 

the blank pre-sintered at 1100 °C/1 h with a much higher strength, hardness, and fracture 
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toughness provided a milling behaviour comparable to the best blank (900 °C/1 h). The 

composite structure of brittle polymer strongly connected to ceramic particles in the green 

blanks was probably responsible for the different mechanism of the material removal during 

milling compared with pre-sintered blanks, which resulted in a poor milling behaviour. We can 

conclude that the prediction of the milling behaviour of ceramic blanks from their mechanical 

properties is difficult and needs further extensive investigation. 

 

The effect of the milled surface on biaxial strength of sintered samples was investigated on a 

sintered disc prepared by milling from blanks pre-sintered at 900 °C/1 h, using the finest milling 

strategies B-0.1-0.2 and F-0.1-0.4, i.e. using strategies that provided the best surface roughness 

after milling with ball end mill and flat end mill, respectively. For comparison, the discs pre-

milled to the default height (4 mm), sintered and diamond ground and polished down to 1 µm 

diamond emulsion were also tested. Two different polishing procedures with the 1 µm diamond 

emulsion were used. One set of discs (P1) was polished on a polishing cloth (MD-Dac, Struers, 

Czech Republic), the other set (P2) was polished on a composite disc (MD-Largo, Struers, 

Czech Republic). The surface topology of the test discs is shown in Fig. 10. The roughness 

parameters Ra and Rz of the milled samples after sintering have been discussed above. The 

roughness parameters of the polished sample groups P1 and P2 were identical. The Ra and Rz 

values were 0.02 ± 0.01 µm and 0.44 ± 0.21 µm, respectively. 
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Fig. 10 Surface topography of sintered samples prepared from blanks pre-sintered at 900 °C/1 h 

by a) milling using the B-0.1-0.2 strategy, b) milling using the F-0.1-0.4 strategy and c) 

polishing (P1, P2). Please note the different colour scales 

 

The effect of surface quality on the strength of sintered discs is obvious from Table 5. The 

Weibull plots of biaxial strength are given in Fig. 11. The polished samples exhibit a 

surprisingly high difference (nearly 170 MPa in the characteristic strength), even though the 

roughness was the same. The difference can only be explained by the formation of larger 

microcracks and subsurface damage due to the application of the polishing method P1. Both 

milled sample sets exhibited strength on a similar level, which lay between the samples polished 

by the methods P1 and P2.  

 

Table 5 Mechanical properties of sintered zirconia discs. 

Sample n 
Mean biaxial 

strength 

 Weibull characteristics 

 Modulus m Characteristic strength 𝜎0 

  (-) (MPa)  (-) (MPa) 

B-0.1-0.2 21 1054 ± 65  7.95−3.13
+2.95 1116−69

+73 

F-0.1-0.4 20 1120 ± 43  11.7−4.62
+4.36 1162−50

+51 

P1 40 990 ± 49  6.57−1.75
+1.67 1056−57

+58 

P2 30 1153 ± 61  7.20−2.26
+2.15 1224−69

+71 

The mean biaxial strength and Weibull parameters are given with 95% confidence interval. 

 

The discs with the surface milled by flat end mill reached nearly the strength of the polished 

samples prepared by the method P2. This fact indicates that surface damage caused by this 

milling strategy is small enough to be healed during the sintering process to the level of the 

polished sample. Therefore, the fracture initiation origins are comparable when the presumption 

of the same resulting microstructure is accepted. The highest Weibull modulus for the F-0.1-0.4 

strategy supports the previous presumption that small defects can be healed during the sintering 

process but when polished afterwards, new defects (in the form of microcracks) can be formed. 

Only a minor strength decrease was observed for milled samples with a higher roughness 
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(milled using the B-0.1-0.2 strategy) compared to samples with a lower roughness (milled using 

the F-0.1-0.4 strategy). The surface roughening by a milling strategy can be a possible way of 

incorporating a surface roughness requested for some applications (dental or surgical implants) 

without sacrificing the strength as reported for sand blasting or grinding after sintering [40,41]. 

The strength of our sintered gelcast zirconia ceramics was comparable or higher than the 

strength of sintered commercially available machinable zirconia discs with similar surface 

roughness [42].  

 

Fig. 11 Weibull plots of flexural strength of sintered samples milled with the ball end mill (B-

0.1-0.2), flat end mill (F-0.1-0.4) and polished by different procedures (P1 and P2). 
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4. Conclusions  

Machinable zirconia blanks of uniform shrinkage during sintering were successfully prepared 

by the gelcasting method. The gelcast blanks could be CNC milled not only in the pre-sintered 

states but also in the green state. The best milling results were achieved for blanks pre-sintered 

at 900 °C/1 h. The best surface roughness with the roughness parameters Ra = 0.1 µm and 

Rz = 1.2 µm was achieved on the sintered discs milled with the flat end mill. Thin structures 

were milled and sintered without observable distortions. Pins of 320 µm in diameter and 

lamellae of 80 µm in thickness, with both of them 5 mm high, were successfully manufactured. 

Among all the tested blanks, the blanks pre-sintered at 900 °C, i.e. blanks providing the best 

milling behaviour, exhibited the lowest strength, hardness, elastic modulus, and fracture 

toughness. The measurement of biaxial strength for sintered discs proved the advantage of 

milled surfaces compared with polished surfaces. The milled discs had comparable or higher 

biaxial strength than the polished samples and when milled with the flat end mill, they exhibited 

even a lower strength scatter. 
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